
1 December 1999 Delphi Informant Magazine

Cover Art By: Diana Nishimura

ON THE COVER
6 DBNavigator
Delphi Frames — Cary Jensen, Ph.D.
Dr Jensen introduces Delphi Frames, a feature so powerful that Delphi 5
was re-designed to use them extensively. The TFrame class allows you
to visually configure a set of components, and then easily reuse that
configuration throughout your application.

FEATURES
12 Undocumented
The Secret World of PIDLs — Kevin J. Bluck and
James Holderness
Dull yet essential, PIDLs are integral to Win32 shell development, yet
they’re virtually undocumented — especially within the Delphi com-
munity. Until Messrs Bluck and Holderness came along ...

18 Sound + Vision
A Multimedia Assembly Line: Part I — Alan C. Moore, Ph.D.
Dr Moore begins a two-part journey of many lessons, including working
with the Delphi Open Tools API to build experts, creating components,
and the nitty-gritty of multimedia programming.

25 In Development
An Automation Server — Ron Loewy
Mr Loewy shows us how to design an Automation server, and build it
with Delphi. He also describes how to test the server by implementing it
as a plug-in, and using script to put it though its paces.

REVIEWS
31 1st Class

Product Review by Bill Todd

DEPARTMENTS
2 Delphi Tools
5 Newsline
34 File | New by Alan C. Moore, Ph.D.

December 1999, Volume 5, Number 12

2 December 1999 Delphi Informant Mag

Delphi
T O O L S

New Products
and Solutions

Xenomorph Announces XLLSpy

Xenomorph announced the

release of XLLSpy, a product
that instantly converts propri-
azine

DeVries Data Systems Anno

Digital Metaphors Ships Re
etary option analytics in a
Microsoft Excel XLL add-in to
a Microsoft COM library. An
unces OfficePartner

portBuilder 4.1
XLL add-in containing any
number of functions can be
converted into a COM library
in a few seconds.

After being converted, pro-
prietary option analytics can
be used independently of
Excel.

They can also be accessed
directly from a variety of sys-
tem architectures and develop-
ment environments, such as
Delphi, Visual Basic, and
Visual C++.

The main advantage for
traders and risk managers in
having option analytics as
COM components is that new
financial products can be inte-
grated into risk management
systems faster.

Xenomorph
Price: Contact Xenomorph for pricing.
Phone: +44 (0)181 971 0080
Web Site: http://www.xenomorph.com
DeVries Data Systems, Inc.
announced OfficePartner, a suite
of VCL components designed to
integrate the Microsoft Office
suite with Borland software
development tools. OfficePartner
enables developers using Delphi
or C++Builder to exploit the
power of Microsoft Office, Excel,
Outlook, and PowerPoint in
their own applications.

OfficePartner enables developers
to build custom solutions without
the in-depth knowledge of COM
and Automation techniques nor-
mally necessary for programming
with Microsoft Office. Design-
time support allows developers to
preview the results of their devel-
opment efforts as they design the
software.

Other OfficePartner features
include point-and-click access to
Microsoft Office applications;
smooth handling of Office’s
Automation events as VCL
events; royalty-free redistribu-
tion of applications built with
OfficePartner; complete source
code; and support for Office 97
and 2000, Delphi 3, 4, and 5,
C++Builder 3 and 4, and
Windows 95, 98, NT 4, and
2000.

DeVries Data Systems, Inc.
Price: US$399
Phone: (888) 866-8033
Web Site: http://www.dvdata.com
Digital Metaphors Corp.
announced it is shipping
ReportBuilder 4.1. This latest
version adds a number of fea-
tures, including a new Crosstab
component (included in the
Professional version) and sup-
port for printing JPEG, GIF,
and RTF2 content.

The Crosstab component
enables users to display calculat-
ed values in a multi-dimensional
format. A crosstab wizard and a
drag-and-drop crosstab editor
can be used to quickly define
any number of row, column,
and value dimensions.

The ReportBuilder Image
components can now be used to
print BMP, WMF, JPEG, and
GIF image formats. Additional
formats may be supported by
registering descendants of
Delphi’s TGraphic.
Users of the InfoPower
RichEdit components that sup-
port the Windows RichEdit2
format can now use
ReportBuilder’s RichText com-
ponents to print RTF2 memos.

Digital Metaphors Corp.
Price: ReportBuilder Standard, US$249;
ReportBuilder Professional, US$495.
Phone: (972) 931-1941
Web Site: http://www.digital-metaphors.com

http://www.xenomorph.com
http://www.dvdata.com
http://www.digital-metaphors.com

3 December 1999 Delphi Informant Mag

Delphi
T O O L S

New Products
and Solutions

Object River Announces EasyUpper

Object River Information

Technology, Inc. announced
EasyUpper, a tool for transform-
ing Delphi Client/Server units
(source code, forms, and
DataModules) into N-
Tier/ActiveForm, and Delphi 4
N-Tier into Delphi 5 N-Tier.

Without re-creating new units,
copying components, or chang-
ing properties piece by piece,
Client/Server units can be trans-
formed into N-Tier; simply give
EasyUpper the source and target
azine

Primoz Gabrijelcic Release

Tetradyne Releases Source

MCM Design Offers TWAIN
direction. EasyUpper divides a
C/S unit into a
RemoteDataModule unit, a
Type Library, and a client unit.
All components, properties,
events, and source code can be
reserved and arranged in the
client or server tier.

Developers can have the
advantages of stateless
RemoteDataModules from
MIDAS 3.0, but without the
pain of upgrade incompatibility.
DataModules can be converted,
s GpProfile 1.3.2

View ActiveX Control Versio

 Toolkit for Delphi Version 1
and all reference links between
forms can be reserved. Master-
Detail Datasets can also be
arranged at the Client and AP
Server. There are various source
and target versions and style
options available for different
situations.

Object River Information
Technology, Inc.
Price: US$149
E-Mail: sophie@www.objectriver.com
Web Site: http://www.objectriver.com
Primoz Gabrijelcic
announced the release of
GpProfile 1.3.2, a profiler for
Delphi. The new version
includes several fixes, such as
the bug that caused a corrupted
profile file when profiling large
projects, and a bug related to
output directory processing.

Other new features include
additional setting to control
instrumentation of pure assem-
bler procedures, and a parser
change for better compatibility
with the Delphi parser (which
allows {$ENDIF<} and varia-
tions to be written instead of
{$ENDIF}).

Primoz Gabrijelcic
Price: Free
E-Mail: primoz.gabrijelcic@altavista.net
Web Site: http://www.eccentrica.org/
gabr/gpprofile
n 2.1

Tetradyne Software Inc.

announced the release of
SourceView ActiveX Control
Version 2.1, a high-performance
syntax-highlighting text editor
component for developers.

New features in version 2.1
include drag-and-drop, column
selection, bookmark support,
HTML parsing support, and
major performance improve-
ments. Version 2.1 also sup-
ports Visual Basic-style auto-
matic case conversion for
reserved words. Source code for
the control is available.
The SourceView ActiveX con-
trol can be customized for col-
oring of any language syntax. In
most cases, customization can
be accomplished by setting con-
trol properties. For more com-
plex syntax requirements, COM
interface hooks are provided for
plugging in custom parsing
implementations. Delphi,
Visual Basic, Visual C++, and
C++Builder examples are pro-
vided for coloring of C, Pascal,
Basic, and HTML syntax.

Developers using modern
development tools that sup-
port implementing COM
interfaces can provide margin
bitmaps and other custom dis-
play elements by implement-
ing interfaces defined by the
SourceView ActiveX Control.
Using this feature, developers
can display breakpoints, book-
marks, and other custom line
attributes.

Tetradyne Software Inc.
Price: US$299 without source; US$499
with source.
Phone: (916) 686-8550
Web Site: http://www.tetradyne.com
.8.1

MCM Design is offering the

TWAIN Toolkit for Delphi
version 1.8.1, which enables
developers to implement the
TWAIN standard into Delphi
3 or 4 applications by using
the VCL components included
in the toolkit.
The toolkit provides methods
for changing the acquisition
properties of a TWAIN driver.
MCM has also implemented a
report generator that stores all
communication between an
application and the TWAIN dri-
ver in a file during the test phase.
The toolkit also provides the
necessary code to get you started
writing your own TWAIN driver.

MCM Design
Price: US$100
Phone: +45 48146667
Web Site: http://www.mcm-design.dk

http://www.objectriver.com
http://www.eccentrica.org/gabr/gpprofile
http://www.eccentrica.org/gabr/gpprofile
http://www.tetradyne.com
http://www.mcm-design.dk

4 December 1999 Delphi Informant Maga

Delphi
T O O L S

New Products
and Solutions

Excel Software Announces WinA&D 3.0

Excel Software announced

WinA&D 3.0 for system analy-
sis, requirements specification,
software design, and code gen-
eration.

Version 3.0 adds Java code
generation, design namespaces,
UML enhancements, dictionary
enhancements, document tem-
plates, and productivity fea-
tures. WinA&D has diagram
editors for process models, data
models, class models, state
models, object models, struc-
ture models, and task models.
Each model shows a different
view of a software system that
is integrated through a global
data dictionary. In addition to
integrated modeling, the tool
provides design verification
reports, scriptable HTML
reports, and complete text
import/export features.
zine

North Winds Releases PDF

Eminent Domain Announce
WinA&D 3.0 generates
Delphi, Java, or C++ code from
a class model and associated
dictionary information. The
generated code includes ready-
to-compile class declarations
with empty function frames.
Programmers write code for the
logic of each function using
either the integrated code and
browse window built into
WinA&D, or any standard
development environment. The
code generator supports features
such as nested classes, template
classes, overloaded functions,
and mapping design elements to
different code folders based on
design namespaces.

WinA&D 3.0 adds interface
and component objects to its
extensive UML support.
Interfaces are represented in the
UML class model as stereo-
Forms Toolkit Component fo

s EDSZipCodes
typed classes or with the abbre-
viated lollipop notation.
Operations of an interface can
be defined once and automati-
cally incorporated into any class
that implements that interface.
The logical class abstraction
with attributes and operations
is the standard design element
of a class model. Components
add properties and events to
represent a physical element in
the software system. Typical
components include Delphi
components, ActiveX controls,
COM objects, CORBA objects,
and JavaBeans.

Excel Software
Price: Standard, US$495; Desktop,
US$1,295; Educational, US$845; Developer,
US$1,995.
Phone: (515) 752-5359
Web Site: http://www.excelsoftware.com
Eminent Domain Software
announced the release of
EDSZipCodes 1.0 for Borland
Delphi and C++Builder. With
EDSZipCodes, developers can
add a complete ZIP code data-
base without using any lines of
code. EDSZipCodes takes
advantage of Eminent Domain’s
spell-checking engine to spell-
check a ZIP code. Using this
technology, a 15MB ZIP code
database is compressed to
1.2MB (92 percent compres-
sion).

EDSZipCodes contains two
components, TEDSZipCombo
and TEDSZipDlg. The
TEDSZipCombo can be dropped
on any form and behaves as a
normal combobox. By setting the
appropriate properties,
TEDSComboBox will update
other edit controls on your form
with the corresponding city, coun-
ty, state, area code, and time zone
for the specified ZIP code. The
TEDSZipDlg behaves much like
an OpenDialog or PrintDialog.
Calling TEDSZipDlg.Execute will
allow the user to select the desired
ZIP code.

EDSZipCode supports third-
party components, including
TurboPower’s Orpheus,
Woll2Woll Software’s
InfoPower, and Julian Ziersch’s
WPTools. Any edit component
will work with EDSZipCode.

Eminent Domain Software
Price: US$89
Phone: (800) 246-5757
Web Site: http://www.onedomain.com
r Delphi

North Winds, Inc. released its

PDF Forms Toolkit Component
for Delphi to be used in conjunc-
tion with Adobe’s Acrobat. The
component allows developers to
use the Adobe PDF forms from
within their Delphi program.

Developers can build their
paper forms with Adobe
Acrobat and populate them with
data from their Delphi program.
They may also electronically
receive PDF forms and retrieve
the field data using the PDF
Forms Toolkit Component. The
component also allows Delphi
programmers to import and
export FDF data to PDF forms
with a few lines of code.

North Winds, Inc.
Price: Not available at press time.
Phone: (724) 838-8993
Web Site: http://www.nwinds.com

http://www.excelsoftware.com
http://www.onedomain.com
http://www.nwinds.com

5 December 1999 Delphi Informant Mag

News
L I N E

December 1999

Inprise Names J.D. Hildebrand Content Director for New Community Site

BDE 5.10 Available
Scotts Valley, CA — Inprise
Corp. named J.D. Hildebrand
Content Director and Editor-
in-Chief of Inprise’s online
community for software devel-
opers. The service is currently
being previewed at http://
community.borland.com. The
goal of the new site is to pro-
vide information and services
to software developers world-
wide.

As Editor-in-Chief,
Hildebrand will establish and
supervise systems for selecting,
acquiring, writing, fact-check-
ing, and editing content for the
site. Prior to joining Inprise,
Hildebrand served as editorial
director of the Developer
Group at PennWell Publishing
Co., where he was responsible
for VB Tech Journal, Windows
Tech Journal, and other publi-
cations for software develop-
ment professionals.
azine

Inprise and Data General

Director’s Lawsuit against

Inprise and Corel Form Alli
A programmer himself,
Hildebrand brings over 20 years
of experience in editorial man-
agement, magazine launches,
trade-show management, cur-
riculum development, editorial
training, and business develop-
ment to the project. He has
trained thousands of magazine
editors on topics ranging from
fact-checking and copyediting to
 to Deliver Enterprise Solu

Inprise Dismissed

ance to Accelerate Linux
magazine launches and finance.
Hildebrand has held editorial-
management positions at Miller
Freeman, Oakley Publishing,
and Camden Communications.
His work has received awards
from the Computer Press
Association, Western
Publications Association,
Magazine Design & Production,
and Folio: magazine.
Scotts Valley, CA — Inprise
Corp. released the latest update
to the Borland Database Engine
(BDE) and SQL Links, version
5.10. This BDE 5.10 upgrade
install will update any previous
version of the US 32-bit BDE
drivers with BDE 5.10.

This update will not place
BDE files on a system that does
not already include an older
BDE version; this is an update
program, not an installation
program. Due to legal reasons,
this will exclude the BDE from
becoming freeware from
Borland. Under your Borland
license agreement, you still have
the right to distribute the BDE,
including this version, with your
programs.

To download BDE 5.10 and
for important install informa-
tion, visit http://www.borland.
com/devsupport/bde/
bdeupdate.html.
tions

Scotts Valley, CA and

Westboro, MA — Inprise Corp.
announced the availability of
VisiBroker for Data General
Corp.’s AViiON line of
DG/UX servers.

VisiBroker allows Data
General to satisfy the needs of
its enterprise customers seek-
ing a scalable, flexible, and eas-
ily maintainable solution.

As part of the agreement,
Inprise’s Professional Service
Organization and Data
General are providing a wide
variety of consulting and train-
ing, as well as technical sup-
port services to Data General’s
customers.

Data General’s AViiON
servers provide customers with
a family of enterprise systems
based on Intel architecture.
AViiON provides a foundation
for strategic applications in a
variety of markets, including
healthcare, finance, manufac-
turing, and others.

Data General’s AV 25000
server, using the DG/UX oper-
ating system, can support up
to 64 500-MHz Pentium III
Xeon processors with up to
2MB of cache per processor,
64GB of memory, and over
100TB of CLARiiON Fibre
Channel storage.

The AV 25000 continues
Data General’s high-availability
tradition with dedicated diag-
nostics processors; AV/AlertSM
“phone home” remote support;
redundant, hot-swappable
power and cooling; and clus-
tering capabilities, including
Disaster Recovery Clusters.

Additional information on
Data General is available at
http://www.dg.com.
Scotts Valley, CA — Inprise
Corp. announced that C.
Robert Coates, who recently
joined Inprise’s Board of
Directors, voluntarily dis-
missed his lawsuit in Delaware
Chancery Court against the
company and other directors.
The lawsuit challenged the
validity of certain policies and
procedures recently adopted by
the Board. The company stated
at the time the lawsuit was
filed that it believed the law-
suit was frivolous and entirely
without merit.
Ottawa, Canada — Inprise
Corp. and Corel Corp.
announced a strategic alliance
to accelerate commercial main-
streaming of Linux technology.
The alliance will enable the
companies to develop middle-
tier solutions for distributed
computing.
As part of the alliance, the
companies will form a research-
and-development partnership to
facilitate the development of
Corel’s office productivity appli-
cations and Inprise’s application
development tools and enterprise
solutions for the Linux operating
system. Linux products from
both companies will also be
jointly marketed and distributed.

Corel Corp. is a developer of
graphics and business productivi-
ty applications for the Windows,
Macintosh, UNIX, Linux, and
Java platforms. For more infor-
mation, visit the Corel Web site
at http://www.corel.com.

http://community.borland.com
http://community.borland.com
http://www.borland.com/devsupport/bde/bdeupdate.html
http://www.borland.com/devsupport/bde/bdeupdate.html
http://www.borland.com/devsupport/bde/bdeupdate.html
http://www.dg.com
http://www.corel.com

6 December 1999 Delphi Informant Ma

DBNavigator
Frames / Delphi 5

By Cary Jensen, Ph.D.
Delphi Frames
Understanding Delphi 5’s New Visual Container Class

Delphi 5 introduces a new visual container class that represents an important
advance in rapid application development (RAD) programming. This class, TFrame,

provides you with the ability to visually configure a set of one or more components, and
then to easily reuse this configuration throughout your application. This capability is so
powerful that Delphi 5’s integrated development environment (IDE) was re-designed to
make extensive use of frames.
This article begins with a general discussion of what
frames are, and what benefits they provide. It con-
tinues with a demonstration of how to create
frames, and how to modify the properties of objects
that appear on frame instances. Next, you’ll learn
how to create event handlers for frames, and how to
override or extend these event handlers in frame
instances. This article concludes by showing you
how to add frames to the Component palette and
the Object Repository, and the benefits of doing so.

Overview of Frames
There are two primary benefits of frames. The
first is that, under certain circumstances, frames
can dramatically reduce the amount of resources
that need to be stored in a project. The second,
and generally more important benefit, is that
frames permit you to visually create objects that
can be duplicated and extended. These happen to
be the same two benefits that you enjoy with
visual form inheritance (VFI).

VFI permits you to create form objects that can be
inherited from easily. The main limit to VFI is that
you must use the form in an all-or-nothing fashion.
Specifically, when you use VFI you always create an
entirely new form. Frames, on the other hand, are
more similar to panels in this respect. That is, a sin-
gle form can contain two or more frames.
Importantly, every frame maintains its relationship
with the parent TFrame class, meaning that subse-
quent changes to the parent class are automatically
inherited by the instances. Although you could
achieve a similar effect using TPanel components,
doing so would be a strictly code-based operation.
That is, you would have to write the code to define
the TPanel descendants manually. Frames, on the
other hand, are designed visually, just like forms.
gazine
Frames can also be thought of as sharing some simi-
larities with component templates (a group of one
or more components that are saved to the
Component palette by selecting Component | Create

Component Template). However, the similarities are
limited to the fact that both component templates
and frames are designed visually (unlike traditional
component design, which is an exclusively code-
based process). The differences between component
templates and frames are actually very great. As
you’ve already learned, a frame is an instance of a
defining class, and, as such, is changed when the
defining class is changed. By comparison, compo-
nent templates are aggregates of components. A
change to a component template has no effect on
objects previously created from that template.

Creating a Frame
The following steps demonstrate how to create a
frame (the code for this project is available for
download; see end of article for details).
1) Select File | New Application to create a new

project.
2) Select File | New Frame to create a new frame.

On this frame, place three labels and three
DBEdits. Also place a DBNavigator and a
DataSource (as shown in Figure 1). Set the
captions of the labels to ID, First Name, and
Last Name. Set the DataSource property of
each DBEdit and the DBNavigator to
DataSource1.

3) With this frame still selected, set its Name
property to NameFrame. (More so than other
objects, it’s particularly important to give a
frame a meaningful name.) Finally, save the
frame by selecting File | Save As. In this
case, save the frame using the file name
NAMEFRAM.PAS.

DBNavigator
That’s all there is to creating a frame. The following section demon-
strates how to put it to use.

Using a Frame
A frame is a component. However, its use typically differs from
most other components that appear on the Component palette.
The following steps demonstrate how to use a frame:
1) Select Form1 of the application you created in the preceding steps.
2) Add two group boxes to the form, one above the other. Set the

caption of the first frame to Customers, and the caption of the
second to Employees. Your form may look something like that
shown in Figure 2.

3) Now add the frames. With the Standard page of the
Component palette selected, click on the Frame component and
drop it in the Customers frame. Delphi responds by displaying
the Select frame to insert dialog box (see Figure 3).

4) Select NameFrame. The frame will now appear in the Customers
frame. Repeat this process, this time placing the frame within the
Employees frame. You may have to select each frame and correct
its size, depending on how you placed it originally. When you’re
done, your form should look similar to that shown in Figure 4.

5) Continue by placing two Table components onto the form. Set
the DatabaseName property of both tables to IBLocal. Set the
TableName property of Table1 to CUSTOMER and the TableName
7 December 1999 Delphi Informant Magazine

Figure 1: A simple frame for displaying an ID number, as
well as a first and last name.

Figure 2: A form ready for the placement of frames.
property of Table2 to EMPLOYEE. Make both tables active by set-
ting their Active properties to True.

6) Here’s where things get interesting. Select the DataSource in the
Customers frame, and set its DataSet property to Table1.
Normally you can’t directly select objects that appear within a
component, but frames are special. You can select any of the
objects that appear within a frame, and work with their proper-
ties. Next, repeat this operation by selecting the DataSource in
the Employees frame and setting its DataSet property to Table2.

7) Finally, hook up all the DBEdits. Assign the DataField prop-
erty of the three DBEdits on the Customers frame to
CUST_NO, CONTACT_FIRST, and CONTACT_LAST, respectively.
For the Employees frame, set the DataField properties of these
same DBEdits to EMP_NO, FIRST_NAME, and LAST_NAME.

8) Save this project and then run it. The running project will look
something like that shown in Figure 5.

Frames and Inheritance
Up to this point, there may seem to be little benefit to using frames.
However, it’s when you use the same frame in a number of different
situations, and then want to change all instances, that the power of
frames becomes obvious. For example, imagine you’ve decided to
make NameFrame read-only. This can be accomplished easily by
simply changing the original frame; each frame instance immediate-
ly inherits all changes.
Figure 3: The Select frame to insert dialog box.

Figure 4: Two instances of NameFrame appear on this form.

Figure 7: A DFM file containing property overrides for a
frame instance.

Figure 5: The example frame project at run time.

Figure 6: Updating NameFrame automatically causes all
instances to be updated as well.

DBNavigator
You can demonstrate this by following these steps:
1) With the project created in the preceding section, press

S@ and select NameFrame from the displayed list of forms.
2) Set the AutoEdit property of the DataSource to False.
3) Next, select the DBNavigator, expand its VisibleButtons proper-

ty, and set the nbInsert, nbDelete, nbEdit, nbPost, and nbCancel
flags to False.

4) Now look at your main form. Notice that both NameFrame
descendants have inherited the changes you made to the frame
(see Figure 6).

Overriding Contained Component Properties
One of the advantages of frames (one shared with VFI) is that you
8 December 1999 Delphi Informant Magazine
can change the properties and event handlers associated with the
objects inside the inherited frame. These changes override the inher-
ited values. Specifically, subsequent changes to the overridden prop-
erty in the original frame don’t affect the inherited value. The fol-
lowing steps demonstrate this behavior:
1) Select the label whose caption is “ID” in the Customers frame.

Using the Object Inspector, change its Caption property to
Customer No:. Now select the ID label for the Employees
frame and change it to Employee ID:.

2) Press S@ and select NameFrame. Change the caption of
this ID label to Identifier.

3) Return to the main form. Notice that the Caption properties of
the labels haven’t changed to Identifier. They still use their over-
ridden values.

4) This effect is accomplished through information stored in the
DFM file. Figure 7 displays a relevant part of the DFM file for
this project.

Notice that information about all components contained within the
frame whose property values have been changed appear in the frame’s
inline section of the DFM file. However, this section only lists those
values that have been changed. All other properties are assigned their
values based either on the values set for the original frame (and which
are stored in the frame’s DFM file), or are designated as default values
in the individual component’s class declarations.

Contained Object Event Handlers
Objects contained within a frame may also have event handlers.
Although events are simply properties of a method pointer type,
they’re treated differently than other types of properties when it
comes to overriding the default behavior defined for the frame.

Let’s begin by considering how an event handler is defined for a frame
object. Consider the frame shown in Figure 8. (This code is found in
the Frame2 project found in the download for this article.) This frame
contains two buttons, one labeled Help and the other Done. (Of
course, these captions can be
overridden in descendant
frames.) These buttons also have
OnClick event handlers, which
are shown in Figure 9.

Just as the event handlers for
objects on a form are published
methods of that form’s class,

Figure 8: A frame with compo-
nents that have event handlers.

DBNavigator

Figure 11: This TwoButtonFrame instance overrides both the
caption and the OnClick event handler.

procedure TTwoButtonFrame.Button1Click(Sender: TObject);
begin

if (TComponent(Sender).Tag = 0) or
(Application.HelpFile = '') then

MessageBox(Application.Handle,'Help not available',
'Help',MB_OK)

else
Application.HelpContext(TComponent(Sender).Tag);

end;

procedure TTwoButtonFrame.Button2Click(Sender: TObject);
var

AParent: TComponent;
begin

AParent := TComponent(Sender).GetParentComponent;
while not (AParent is TCustomForm) do

AParent := AParent.GetParentComponent;
TCustomForm(AParent).Close;

end;

Figure 9: The OnClick event handlers for the Help and Done
buttons on our frame.

procedure TForm1.TwoButtonFrame1Button2Click(
Sender: TObject);

begin
with TForm2.Create(Self) do begin

ShowModal;
Release;

end;
// The following is the original, auto-generated code
// TwoButtonFrame1.Button2Click(Sender);

end;

Figure 10: An overridden event handler for a TwoButtonFrame
descendant that was placed on a form.

object LogoFrame: TLogoFrame
Left = 0
Top = 0
Width = 239
Height = 178
TabOrder = 0
object Image1: TImage

Left = 0
Top = 0
Width = 239
Height = 178
Align = alClient
Picture.Data = {

07544269746D6170D6540000424DD654000000000000760000...

Figure 12: A segment of LogoFrame’s DFM file.
the event handlers of objects on a frame are published methods of
that frame. (The code segment doesn’t actually depict the fact that
these methods are published. Rather, they’re declared in the default
visibility section of the frame’s class declaration, and the default visi-
bility is published.)

If you inspect the code associated with the Button2Click event han-
dler, which is associated with the Done button, you’ll notice that the
event handlers associated with the frame introduces an interesting
artifact. Specifically, Self is the frame, not the form in which the
frame is contained. Consequently, it isn’t possible to simply invoke
the Close method from within this event handler to close the form.
When an unqualified method invocation appears in code, the com-
piler assumes you want it to apply to Self. Because a TFrame object
doesn’t have a Close method, the compiler generates an error if you
simply use an unqualified call to Close.

Because the frame in this example is designed to be embedded within a
form, the event handler uses the GetParentComponent method of the
frame to climb the containership hierarchy within which the frame is
nested. Once a TCustomForm instance is found (which will either be a
TForm descendant or a custom form based upon TCustomForm), that
reference is used to invoke the form’s Close method.

Overriding Contained Object Event Handlers
If you’re familiar with event overriding in VFI, you’ll recall that Delphi
embeds a call to inherited from within an overridden event handler on
a descendant form. You can then alter the generated code to either add
additional behavior before, or following, the call to inherited, or condi-
tionally invoke inherited, or you can omit the call altogether.

Frame descendants don’t use inherited when invoking the event
handler for an object embedded on the parent frame. Instead, the
9 December 1999 Delphi Informant Magazine
ancestor frame’s method is called directly. For example, if you place
the TwoButtonFrame frame (shown in Figure 8) onto a form and
then double-click it, Delphi will generate the following code:

procedure TForm1.TwoButtonFrame1Button2Click(
Sender: Object);

begin
TwoButtonFrame1.Button2Click(Sender);

end;

In this generated code, TwoButtonFrame1 is the frame descendant
of TTwoButtonFrame (the original frame’s class). Button2Click, as
you saw in the earlier code segment, is the event handler for the
Done button on that frame. As a result, this code invokes the origi-
nal event handler, passing it the Sender that was passed to the but-
ton on the frame instance.

This means that event handling introduces another interesting fea-
ture. Specifically, in these situations, Sender is generally not a mem-
ber of the Self object. Indeed, Sender is usually a member of the
form object, and Self is the frame object.

Figure 10 shows an overridden event handler for a
TwoButtonFrame descendant that was placed on a form. In this
case, the original behavior is “commented out,” so the new
behavior completely replaces the originally defined behavior for
the Done button.

The caption of this button was also overridden, so it displays the
text, Start. Figure 11 shows the form on which this
TwoButtonFrame descendant appears.

Frames that Save Resources
The form shown in Figure 11 actually contains two frames. We’ve
already discussed the TwoButtonFrame frame. The second frame dis-
plays the company logo, and is named LogoFrame.

Figure 14: The Add To Repository dialog box.

Figure 15: The location of your frame template.

DBNavigator
LogoFrame
appears on more
than one form in
the FramDemo
project. The
alternative to
using a frame to
display the logo
is to place an
Image object on
each form upon
which you want

the logo to appear. However, the use of a frame for this purpose signifi-
cantly reduces the amount of resources that must be compiled into the
.EXE, and, therefore, results in a smaller executable.

The reason for this can be seen if you consider the following seg-
ment of the DFM file for the form shown in Figure 11:

inline LogoFrame1: TLogoFrame
Left = 6
Top = 6
Width = 211
Height = 182
inherited Image1: TImage

Width = 211
Height = 182

end
end

If, instead, a TImage instance had been placed onto the form, the
DFM file for the form would have had to contain the entire binary
representation of the logo. Figure 12 shows a segment of
LogoFrame’s DFM file. (Note that it shows only a tiny portion of the
entire hexadecimal representation of the binary resource.)
Furthermore, every form containing one of these images would have
repeated this resource. When a frame is used, however, that resource
is defined only once.

Simplifying Frame Use
Within a single, small project, it’s fairly easy to use the Frame com-
ponent on the Standard page of the Component palette. For larger
projects, however, or for situations where you want to use the same
frame in multiple applications, you need something easier.
Fortunately, Delphi permits you to place individual frames onto the
Component palette, permitting these frames to be used easily and
repeatedly without the extra steps required by the Frame compo-
nent. A frame can also be placed into the Object Repository, permit-
ting it to be copied easily. Both of these techniques are described in
the following sections.

Adding a Frame to the Component Palette
By placing a particular frame onto the Component palette, you
make its placement as simple as any other. By comparison, using the
Frame component on the Standard page of the Component palette
requires four steps and limits you to placing frames already defined
within your project. To place a particular frame onto the
Component palette, follow these steps:
1) Save your frame to disk. If you want to use this frame in multi-

ple applications, it’s highly recommended that you save the
frame to a directory that won’t be deleted when you update
Delphi. For example, create a folder named C:\Program
Files\Borland\DelphiFrames and store your frames there.

2) Select the frame and right-click on it. Select Add to Palette.

Figure 13: The Component Template
Information dialog box.
10 December 1999 Delphi Informant Magazine
Delphi displays the Component Template Information dialog
box (see Figure 13).

3) Define the name of the frame component in the Component

name field, the page of the Component palette on which you
want the frame to appear in the Palette page field, and, if you’ve
created a custom 24 x 24 pixel, 16-color icon for the frame,
click the Change button to select this .BMP file. Click OK when
you’re done.

Using a Frame from the Component Palette
To use a frame previously placed on the Component palette, select
the page of the Component palette onto which you saved the frame,
select the frame’s icon, and drop it onto the form on which you
want a descendant of that frame to appear. This process requires
only two steps.

Adding a Frame to the Object Repository
By adding a frame to the Object Repository, you make it easy to
copy it into a new project. Especially important is the ability to use
the inheritance offered by the Object Repository to place an inherit-
ed frame into a new project, thereby maintaining the relationship
between the frame and its ancestor. To add a frame to the Object
Repository, follow these steps:
1) Save your frame to disk. In addition to saving this frame to

Delphi’s OBJREPOS directory or to a shared directory, you
can also save it to the same one to which you save frames that
you add to the Component palette. Saving the frame to a
shared directory is especially nice if you are using a shared

DBNavigator
object repository. This permits multiple developers to share
frames.

2) Right-click the frame and select Add To Repository. Delphi
responds by displaying the Add To Repository dialog box (see
Figure 14).

3) Fill out the Add To Repository dialog box just as you would for
any template you’re adding to the Object Repository. Click OK

when done.

Using a Frame from the Object Repository
To use a frame from the Object Repository, use the following steps:
1) Select File | New.
2) Select the page of the Object Repository to which you saved

your frame template (see Figure 15).
3) Select the icon for the frame; then select the Inherit radio button.
4) Click OK to add an inherited version of the frame to your project.

If you select the Copy radio button instead of the Inherit radio but-
ton, the newly added frame will be a copy of the original frame.
This is useful when you want to create a new frame, but don’t want
to maintain a relationship between it and the original.

Conclusion
Does it make a difference whether you place a frame you want to
reuse on the Component palette or the Object Repository? The
answer is a strong “Yes!” In most cases, you’ll want to place frames
you use frequently onto the Component palette. When you place a
frame from the Component palette, you’re always placing an
instance of the frame class. You can then easily change the properties
and event handlers of this instance as described earlier in this article.
By comparison, placing a frame from the Object Repository creates
11 December 1999 Delphi Informant Magazine
a new class, not an instance. This new class is either a copy of the
original or a descendant, depending on which radio button you
select in the Object Repository dialog box. If you want to use a
frame in a project, it makes a great deal of sense to place an instance,
rather than define a new class for your frame. For this purpose, sav-
ing the frame to the Component palette is the best approach.

The one situation where you might want to use the Object
Repository is when you’re specifically creating hierarchies of frames,
where each frame descendant introduces additional objects, meth-
ods, or event handlers. Here, the inheritance offered by the Object
Repository makes it easier for you to create each new descendant.
However, once you’ve defined the frame descendants you want to
use regularly, I would again suggest that you add these to the
Component palette to simplify their use. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\DEC\DI9912CJ.

Cary Jensen is president of Jensen Data Systems, Inc., a Houston-based database
development company. He is co-author of 17 books, including Oracle JDeveloper
[Oracle Press, 1998], JBuilder Essentials [Osborne/McGraw-Hill, 1998], and
Delphi in Depth [Osborne/McGraw-Hill, 1996]. He is a Contributing Editor of
Delphi Informant, and is an internationally respected trainer of Delphi and Java.
For information about Jensen Data Systems consulting or training services, visit
http://idt.net/~jdsi, or e-mail Cary at cjensen@compuserve.com.

http://idt.net/~jdsi

12 December 1999 Delphi Informant Ma

Undocumented
PIDLs / Shell IDs / Delphi 2-5 / 32-bit Windows

By Kevin J. Bluck and James Holderness
The Secret World of PIDLs
Working with Windows’ Shell Item Identifiers

One of the most visible changes introduced with Windows 95 was the new shell inter-
face. Love it or hate it, the shell fundamentally changed how applications integrate

with the Windows operating system. Unfortunately, Microsoft has been parsimonious
when distributing information about how to integrate your applications with the shell.
Frankly, it’s shocking how little information is available about shell programming, and
almost all of what is available is in the form of unbelievably dry technical details with
strong soporific qualities. Moreover, virtually no information is available for Delphi devel-
opers, because almost all Windows API documentation is for C/C++ programmers.
This article is a start at changing that sad state of
affairs. We’re sorry to say there will be no nifty
components in this piece. Instead, we’ll examine
the unglamorous plumbing at the heart of shell
programming. The center of everything, when
programming the shell, is a little-understood con-
struct known as the PIDL. That’s right — PIDL.

The Shell Namespace
One of the core concepts of the new shell is the
namespace, a fancy word for whatever system is
used to navigate the computer’s data. In DOS,
the namespace consisted entirely of the file sys-
tem. This was a hierarchical or tree-like name-
space, with its root in the aptly named “root
directory.” Technically, there were several name-
spaces available on each computer, one for each
logical disk drive. Even as late as version 3.1, the
advent of Windows didn’t significantly change
this namespace convention. With the release of
Windows 95, however, the namespace paradigm
changed dramatically.

The namespace of Windows 95 (and that of its
“descendants,” such as Windows NT and
Windows 98) is still hierarchical. However, it no
longer corresponds directly to the file system.
Instead, the file system is integrated into a larger
namespace. This new namespace developed the
generic concept of folders and items. A folder is
analogous to the old DOS directory, its purpose
being to contain other namespace elements, such
as other folders and items. It doesn’t contain any
gazine
other useful data. An item is the exact opposite.
Similar to a DOS file, it contains useful data,
but no other namespace elements. It’s important
to draw distinctions between the file system ele-
ments and the new namespace elements. All file
system directories are folders, but not all folders
are directories. All files are items, but not all
items are files.

This new namespace was rooted at the Desktop
folder. The Desktop is the basic screen the user
sees after starting Windows. Conceptually, every-
thing in the system exists within the Desktop.
This includes the My Computer folder, which
contains the old DOS namespaces — the logical
disk drives. The Desktop and My Computer
folders obviously aren’t part of the file system.
Neither are special folders, such as Control
Panel, Printers, Recycle Bin, and Network
Neighborhood. These namespace folders are dis-
tinct from the file system.

A Rose by Any Other Name
For something to be useful, it must be identifi-
able. This truism naturally applies to folders and
items. Every distinct folder and item must have a
name that is unique within its namespace. This
leads to an important concept: relative and
absolute names. A relative name is unique only rel-
ative to a given parent. An absolute name is unique
within the entire namespace. If you prefer, you
may think of the absolute name as a name that is
relative to the namespace root.

Undocumented
Under the old DOS file system, every element of the system was
uniquely identified by its fully qualified path. The fully qualified
path was the absolute name. A certain 8.3-style file name or single
directory name might be repeated many times on a given disk drive,
but the same name couldn’t exist more than once inside a given
directory. The 8.3-style file name alone is a relative name, unique
only to the directory containing the file. Tracing and pre-pending
the complete list of relative directory names from the root to the
destination item always results in a completely unique absolute
name for every element on the disk.

Most developers are familiar with the DOS-style notation for form-
ing an absolute name in the namespace. A fully qualified path
begins with the drive letter, delimited by a colon. The “root” is
assumed, more or less equivalent with the drive itself. Each directory
along the path to the ultimate goal is listed by its relative name.
Each directory name is delimited by a single backslash, so that you
can tell where one name ends and the next begins. The last entry
after the last backslash is the relative name of the item being identi-
fied, whether it’s a directory or a file. The entire string together con-
stitutes the directory or file’s absolute name.

This naming system worked adequately for the DOS file system.
However, with the advent of Windows 95, not all folders and
items could be described in terms of the file system. A new nam-
ing system was needed to uniquely identify all the elements of
the namespace.

Redmond’s answer was two new data structures. Each element’s rela-
tive name was specified with an item identifier, defined as a
SHITEMID record, and known in Delphi as TShItemID. These
records could be concatenated as needed, conceptually the same
operation as directory names being strung together with backslashes.
Such a string of records was known as an item identifier list, or IDL,
defined by the ITEMIDLIST record type, and known in Delphi as
TItemIDList. Because IDLs are almost always manipulated by point-
ers, the entire structure became commonly known as a PIDL (pro-
nounced and sometimes written as “piddle”). This pointer type is
known in Delphi as PItemIDList. PIDLs, or pointers to item identi-
fier lists, are the universal means of identifying elements within the
namespace shell. All of these Delphi data types are defined in the
standard VCL ShlObj unit.

The precise structure of these records often causes confusion. The
most important thing to understand about the internal structure of
PIDLs is that you’re not supposed to understand most of it. DOS-
style paths, as you know, are string types, and are, therefore, human-
readable. PIDLs are binary types, and most of their content isn’t
intended for your direct manipulation. Adding to the confusion is
the fact that TShItemID and TItemIDList are variable-length types.
Their declarations are, therefore, less than clear.

The following code snippet shows the declaration of TShItemID:

TSHItemID = packed record
cb: Word; // Size of the record (including cb).
abID: array[0..0] of Byte; // Item ID data.

end;

First is a Word known as cb. Translated from that lovely Hungarian-
notation brevity C programmers seem to prefer, cb means count of
bytes. It’s the total size, in bytes, of the entire TShItemID record.
You need this information because the next data member can be of
13 December 1999 Delphi Informant Magazine
almost any size up to about 65,533 bytes. At first glance, the abID
(array of bytes ID) data member seems pretty weird. An array with a
single element of Byte? Why not just Byte?

Don’t take this literally. The Windows programmers took advantage
of the C language’s ability to de-reference any desired index of an
array, even if that index exceeds the original boundaries defined for
the array. This isn’t really an array of one byte. They just say that in
the definition to provide a placeholder for later use. It’s actually an
array of (cb - SizeOf(cb)) bytes. Exactly what data goes in this array?
Quite literally, anything. Unless you’re writing a shell namespace
extension, which is well beyond the scope of this article, you have
no business poking around in that data. For most purposes, just
resign yourself to not knowing what’s in there, and simply accept
that it exists.

The declaration of TItemIDList is, if possible, even more unintuitive:

TItemIDList = packed record
mkid: TShItemID;

end;

It consists of a single data member, mkid, of type TShItemID. Again,
why even bother? What’s the point of declaring a record that only
has one element? Again, the Windows designers are exploiting a fea-
ture of the C language. Just as the abID array above wasn’t necessari-
ly an array of just one byte, this isn’t necessarily just one TShItemID.
It’s actually a list of TShItemID structures, one packed right after
another. The end of the list is marked by a TShItemID record, which
has the cb data member set to 0. Obvious, right? Maybe a picture
will help. Figure 1 shows a graphical representation of a
TItemIDList, which contains three TShItemID records. Notice that
the value of cb is always two greater than the number of bytes con-
tained in abID, except for the end-of-list marker. This is because the
value in cb also includes the size of the Word-sized cb data member
itself, which just happens to be 2. Notice also how a fourth
“dummy” TShItemID record is provided with the cb data member
set to 0 to mark the end of the list.

Hopefully, the purpose of the cb data member is becoming clear.
This is the only reliable guidepost you have for navigating a
TItemIDList. The PItemIDList pointer type points to the first byte
of the TItemIDList. Unless the PItemIDList is nil, you can expect
there will be at least one TShItemID in the list. You can consider
the PItemIDList pointer to also be of type PShItemID, pointing at
the first TShItemID record in the list. The cb data member of that
TShItemID tells you how far forward you need to increment your
PItemIDList pointer to be pointing at the start of the next
TShItemID in the list. If cb is 0, then you know you’re at the end of
the list. Because you know nothing about the format of the data in
abID, you would have no idea where to find the end of the abID
data without cb.

Figure 2 shows a code sample that accepts a PItemIDList as a
parameter and iterates through the entire TItemIDList, returning
the total size of the list. This information would be useful in
determining the bytes to allocate for a buffer to hold a copy of
the list. Notice in particular how the local pointer to the item
identifier is incremented with the value of the current item iden-
tifier’s cb data member to make it point to the start of the next
item identifier.

Just as there are relative and absolute file paths, there are also relative

Undocumented
and absolute PIDLs. An absolute PIDL is one that is fully qualified
with a string of TShItemID records that walk down all the way from
the root of the namespace, the Desktop folder. A relative PIDL is
usually taken to mean a PIDL with a single TShItemID contained in
the list, naming a folder or item relative to its immediate parent
folder. Obviously, this single ID is only useful if you know which is
its parent folder.

Folders in the shell are represented by a COM interface called
IShellFolder. We won’t get into a lot of detail about IShellFolder, as
it’s a rather broad topic that deserves its own article. Suffice it to say
that a given reference to IShellFolder represents a given shell folder.
The various methods provided by IShellFolder nearly always deal
with relative PIDLs, because the IShellFolder object itself serves to
identify the PIDL’s parent folder. The family of SH... shell API
functions, however, doesn’t typically include a reference to a specific
IShellFolder object. Therefore, these standalone shell functions gen-
erally take and return absolute PIDLs. Consequently, it’s important
to keep track of what sort of PIDL your pointer is referencing, as a
PIDL returned by an IShellFolder method isn’t likely to be immedi-
ately useful in an SH... function.

PIDL Memory Allocation
One tricky aspect of PIDLs is that they’re frequently allocated in
one module and then freed in a module written by a different party.
Very often, shell functions internally allocate and return a PIDL,
which you are responsible for freeing later. This means that memory
can be allocated by code written by one development tool, and freed
by code written in a totally different tool.

This can be problematic, as different development environments
often use different memory allocation schemes. For example, using
Delphi’s FreeMem procedure to free memory originally allocated by
some C compiler’s malloc RTL function would most likely end up
corrupting the heap. As a result, the memory buffers to contain
PIDLs must always be allocated and freed by the shell task allocator.
You must never use other means available in Delphi, such as GetMem
14 December 1999 Delphi Informant Magazine

cb abID cb abID cb abID cb abID
24 22 bytes 17 15 bytes 20 18 bytes 0 0 bytes

Figure 1: A graphic example of TItemIDList.

function GetPIDLSize(PIDL: PItemIDList): Integer;
var

CurrentID: PShItemID;
begin

// Check PIDL is not nil.
if (PIDL <> nil) then

begin
// There will always be at least two bytes for the
// terminating cb.
Result := SizeOf(CurrentID.cb);
// Initialize the local item id pointer and walk
// through the list until the terminating cb = 0 is
// encountered. Add the value of each cb along the
// way to the result.
CurrentID := PShItemID(PIDL);
while (CurrentID.cb <> 0) do begin

Inc(Result, CurrentID.cb);
Inc(PChar(CurrentID), CurrentID.cb);

end
end

else
// If PIDL is nil, return 0 size.
Result := 0;

end;

Figure 2: TItemIDList navigation.
or FreeMem, or other Windows API calls such as GlobalAlloc. Using
only the shell task allocator ensures that the PIDL’s memory will
always be allocated and freed using the same scheme, regardless of
the development environment used for the module.

The shell task allocator is implemented via the IMalloc COM inter-
face. IMalloc provides a fairly complete engine for memory alloca-
tion. IMalloc is defined in the ActiveX standard unit in Delphi 3 or
later, or the OLE2 unit in Delphi 2 (see Figure 3). The simplest way
to get a reference to an IMalloc interface is to use the SHGetMalloc
API function. This documented function is defined in the standard
ShlObj unit. Its declaration is also shown in Figure 3.

A basic example of using this allocation engine is shown in Figure 4.
Notice that in Delphi 3 and later, it isn’t necessary to explicitly
release the COM interface. This is done for you automatically when
the variable referencing the interface goes out of scope. However, in
Delphi 2, you need to explicitly call the interface’s Release method.

If you don’t need the full services provided by IMalloc, but
instead merely want to allocate or free buffers, there is a stream-
lined way to go about it. There are two simple undocumented
functions, SHAlloc and SHFree, which can allocate and release
memory using the shell allocator without the effort of obtaining
an IMalloc interface. Like all undocumented functions discussed
in this article, they’re exported from SHELL32.DLL, and they’re
exported only by ordinal. SHAlloc uses ordinal 196, and SHFree
is ordinal 195. Note that these functions are intended for generic
buffers. When freeing a PIDL, it’s preferable to use the ILFree
function, exported by ordinal 155, even if it’s not much more
than a wrapper around SHFree. It also makes sure the PIDL isn’t
nil before calling SHFree. The declarations for these three func-
tions are shown here:

function SHAlloc(BufferSize: ULONG): Pointer; stdcall;
procedure SHFree(Buffer: Pointer); stdcall;
procedure ILFree(Buffer: PItemIDList); stdcall;
IMalloc = interface(IUnknown)
['{ 00000002-0000-0000-C000-000000000046 }']
function Alloc(cb: Longint): Pointer; stdcall;
function Realloc(pv: Pointer; cb: Longint):

Pointer; stdcall;
procedure Free(pv: Pointer); stdcall;
function GetSize(pv: Pointer): Longint; stdcall;
function DidAlloc(pv: Pointer): Integer; stdcall;
procedure HeapMinimize; stdcall;

end;

function SHGetMalloc(var ppMalloc: IMalloc):
HResult; stdcall;

Figure 3: The IMalloc COM interface.

var
Allocator: IMalloc;
Buffer: Pointer;

begin
// Get an IMalloc interface.
SHGetMalloc(Allocator);
// Allocate 50-byte buffer.
Buffer := Allocator.Alloc(50);
// Expand buffer to 100 bytes.
Buffer := Allocator.Realloc(Buffer,100);
Allocator.Free(Buffer); // Free buffer.

end;

Figure 4: Using the IMalloc COM interface.

Undocumented
From Paths to PIDLs and Back Again
Typically, PIDLs are returned to you by certain functions and
passed around to other functions, without you ever really knowing
anything about the internal structure of the IDL and without you
ever needing to create a PIDL. Obviously, if you’re implementing a
namespace extension, you’ll need to create item identifiers for the
objects in your own virtual folders, but the format of those item
identifiers is specific to your folder, and you can do whatever you
want with them. But what happens if you need to create a PIDL
for somebody else’s namespace, such as a path in the file system?

The “documented” way would be to get an IShellFolder interface for
the desktop, convert the path string in question into a PWideChar
null-terminated UNICODE string, and then call the desktop
IShellFolder’s ParseDisplayName method with the PWideChar. What
a drag! If you’re feeling lazy, you might find it easier to use one of
these three functions:

function SHILCreateFromPath(Path: Pointer;
PIDL: PItemIDList; var Attributes: ULONG):
HResult; stdcall;

function ILCreateFromPath(Path: Pointer):
PItemIDList; stdcall;

function SHSimpleIDListFromPath(Path: Pointer):
PItemIDList; stdcall;

SHILCreateFromPath is basically just a wrapper around the desktop
folder’s ParseDisplayName, and ILCreateFromPath is just a simplified
wrapper around SHILCreateFromPath. However,
SHSimpleIDListFromPath implements the whole process itself. The
ordinal values are 28, 157, and 162, respectively.

We suspect that SHSimpleIDListFromPath is somewhat faster
because it doesn’t validate the path you provided to it. Both
SHILCreateFromPath and ILCreateFromPath validate the path before
conversion. If you pass an invalid path to either of these functions,
you’ll get a nil result. If you specify an unavailable drive, such as the
A: floppy drive when there is no disk, you can get an error dialog
box. If you specify an unavailable network resource, the function
may block for quite a while until the network request times out and
you finally get your nil.

SHSimpleIDListFromPath, on the other hand, doesn’t validate the
path, and so you can get a PIDL for any correctly formed path you
can dream up without error. However, this function may not always
generate completely correct PIDLs. We’ve noticed that when PIDLs
created by SHSimpleIDListFromPath are passed to the
SHBrowseForFolder function, occasionally the resulting display name
and icon are incorrect. Accordingly, we recommend the use of
SHSimpleIDListFromPath only when you’re likely to pass invalid
paths and don’t want an error to result.

Rather, if you need to convert an absolute PIDL into a file system
path, wonder of wonders, there is an actual documented function to
do that fairly simply. It’s the SHGetPathFromIDList function, shown
here, available from the standard ShlObj unit (there are AnsiChar
and WideChar variants):

function SHGetPathFromIDList(PIDL: PItemIDList;
Path: PAnsiChar): BOOL; stdcall;

function SHGetPathFromIDListW(PIDL: PItemIDList;
Path: PWideChar): BOOL; stdcall;
15 December 1999 Delphi Informant Magazine
Notice that the Path parameter takes a pointer to a null-terminated
string. You must provide a pointer to a buffer capable of accepting
MAX_PATH chars plus a null terminator, or risk an access violation,
because there is no parameter for specifying the size of your buffer.

Display Name
If you need to determine the display name of a PIDL, the document-
ed method is to use the method IShellFolder::GetDisplayNameOf.
After you figure out which of the three possible ways the string was
returned to you is the correct one, you’ll have the “user-friendly”
name for the shell object the PIDL represents.

It’s also possible to get the display name from the documented
SHGetFileInfo API function, if you don’t mind figuring out which
flags to use and fishing around in the returned record for the data
you want. Or, if you’re in a hurry, you can use the
ILGetDisplayName function. ILGetDisplayName basically calls the
desktop’s IShellFolder::GetDisplayNameOf function with the flag
SHGDN_FORPARSING. The ordinal value for ILGetDisplayName
is 15. As you can see from the code snippet below, this function
doesn’t return the “normal” short display name for file system
objects, but rather the fully qualified path. If you want the short dis-
play name, you will be better off using SHGetFileInfo:

function ILGetDisplayName(PIDL: PItemIDList;
Name: Pointer): LongBool; stdcall;

Windows NT and PWideChar
You may have noticed that the string-type parameters for the
undocumented functions previously shown are declared as type
Pointer instead of PChar. This is because of a small “catch” that
is common for undocumented functions. All of these string-type
parameters take PAnsiChar on Windows 95, and PWideChar on
Windows NT.

There’s no choice of ANSI or UNICODE as would be expected
for a documented function. Windows 95 uses the ANSI version
only, and Windows NT uses the UNICODE version only. Take it
or leave it. If you want your applications to function correctly on
both platforms, you’re going to have to check what operating sys-
tem is in use at run time. The Win32Platform global variable pro-
vided in the SysUtils unit is handy for this. If your application is
running on NT, you’ll need to convert any string parameters to
PWideChar before calling the function. When the function
returns, you’ll also obviously need to convert any returned strings
back to PAnsiChar. It may be annoying, but that’s the price you
pay for using undocumented functions.

Equality and Parenthood
If you need to determine if two PIDLs are equal, the approved
method is to use the IShellFolder::CompareIDs method. Relative
PIDLs can be compared using their common parent’s
IShellFolder, and absolute PIDLs must be compared using the
Desktop folder’s IShellFolder. This method also allows you to
determine which PIDL should come first in a sorted list if they
aren’t equal. However, as usual, there are undocumented shortcut
methods. To test whether two PIDLs are equal, you may use
the ILIsEqual function. If you need to determine whether a
particular PIDL is a child of another PIDL, you would call the
ILIsParent function passing it the suspected parent and child.
If you require that the child be an immediate descendant (e.g.
it is a child of the parent folder itself, not one of the parent
folder’s subfolders), then you would set the ImmediateParent

Undocumented
parameter of the function to True. The following code shows
the function declarations:

function ILIsEqual(PIDL1: PItemIDList; PIDL2: PItemIDList):
LongBool; stdcall;

function ILIsParent(PIDL1: PItemIDList;
PIDL2: PItemIDList; ImmediateParent: LongBool):
LongBool; stdcall;

The ordinals for these functions are 21 and 23, respectively. Note
that the equality of two ID lists can’t necessarily be determined
with a binary comparison if you’re tempted to try that.
Equivalent PIDLs can conceivably have different internal binary
structures. Both of the functions previously shown use the
Desktop folder’s IShellFolder::CompareIDs method to perform
equality tests. The ILIsParent function, of course, only tests
whether the base PIDL of the child is equal to the parent PIDL.

Parsing a PIDL
Sometimes you have a need to parse a PIDL, identifying individual
IDs contained in the list. There seem to be no documented func-
tions for these tasks. Apparently, Microsoft expects you to imple-
ment functions to slice and dice PIDLs yourself. Luckily, we’ve got
the inside scoop for you.

If you need to determine the total size in bytes of all the identifiers
in a PIDL, you can use the ILGetSize function. If you need to iterate
forward through each item identifier in a PIDL, you’ll probably find
ILGetNext very useful. When given a PIDL (or a pointer to any ID
in the list, for that matter), the function will return a pointer to the
next item identifier in the list. If the PIDL is nil or is already point-
ing to the last item in the list, the function will return nil. For the
specific case of finding the last item identifier in the list, you can just
call ILFindLastID.

An even more specific form of search is the ILFindChild func-
tion. Given a parent PIDL and a child PIDL, it will return a
pointer to the unique portion of the child. For example, if you
passed it PIDLs for the folder ‘C:\DIR’ as the parent and the
item C:\DIR\FILE.TXT as the child, it would return a pointer to
that portion of the child PIDL that represents FILE.TXT. If the
given child isn’t a child of the parent, the function will return nil.
The ordinals for these functions are 152, 153, 16, and 24, respec-
tively (see Figure 5).

Copying and Combining
Something even more useful when dealing with PIDLs is the ability to
make a copy of a PIDL passed to you by the shell. When passed an
existing PIDL, the ILClone function will allocate and return a new
identical copy of that PIDL. The ILCloneFirst function, on the other
hand, will return a new PIDL containing only the first item identifier
from the source PIDL. If you need a copy of the last item identifier,
16 December 1999 Delphi Informant Magazine

function ILGetSize(PIDL: PItemIDList): UINT; stdcall;

function ILGetNext(PIDL: PItemIDList):
PItemIDList; stdcall;

function ILFindLastID(PIDL: PItemIDList):
PItemIDList; stdcall;

function ILFindChild(ParentPIDL: PItemIDList;
ChildPIDL: PItemIDList): PItemIDList; stdcall;

Figure 5: PIDL parsing functions.
you could use a combination of ILFindLastID and ILCloneFirst. For
other portions of the IDL, you would have to use ILGetNext and
ILCloneFirst. The ordinals for these two functions are 18 and 19,
respectively, and the definitions are shown here:

function ILClone(PIDL: PItemIDList): PItemIDList; stdcall;

function ILCloneFirst(PIDL: PItemIDList):
PItemIDList; stdcall;

If you want to combine two PIDLs, you would use the ILCombine
function. Given two PIDLs, it will create a new PIDL containing the
two source lists joined consecutively. If you want to combine a single
item identifier with a PIDL, you would use the ILAppendID function.
It can be used to append a TItemID record to the beginning or end of
an existing IDL. However, unlike ILCombine, the original PIDL is
destroyed by this operation. The ILAppendID function can also be
used to create a PIDL from an item identifier alone by passing a nil
for the PIDL. The ordinals for these functions are 25 and 154, respec-
tively. The function declarations are shown here:

function ILCombine(PIDL1: PItemIDList; PIDL2: PItemIDList):
PItemIDList; stdcall;

function ILAppendID(PIDL: PItemIDList; ItemID: PShItemID;
AddToEnd: LongBool): PItemIDList; stdcall;

Global Memory Cloning
As we mentioned earlier, the memory for an IDL should almost
always be allocated using the shell’s memory allocator. However,
there are two functions that use a different method of allocating and
freeing memory, ILGlobalClone and ILGlobalFree (ordinals 20 and
156). The function declarations are:

function ILGlobalClone(PIDL: PItemIDList):
PItemIDList; stdcall;

procedure ILGlobalFree(PIDL: PItemIDList); stdcall;

On Windows NT, these global functions just use the default process
heap (as returned by GetProcessHeap). This led us to believe that
heap allocations were in some way more efficient than the shell allo-
cator, and that global functions were only used internally by the shell
for reasons of efficiency.

However, on Windows 95 most of the internal structures in the shell
need to be shared between all instances of the DLL. In the case of
PIDLs, the memory used when allocating them obviously has to be
shareable as well. ILGlobalClone solves this problem by using an
undocumented shared heap for the allocations, conveniently making
the pointers accessible from anywhere. In general, this is a specialized
technique only applicable to “magic” programming within the
Explorer itself. We’re sure Microsoft would frown on those who dare
to use this facility for their own purposes.

Truncation
If you need to delete an entire PIDL, just use the ILFree func-
tion. However, if you only need to remove the last item
identifier from the end of a list, you can use the ILRemoveLastID
function:

function ILRemoveLastID(PIDL: PItemIDList):
LongBool; stdcall;

Undocumented
The ordinal value is 17. The return value is True if the operation
was successful. However, note that it doesn’t actually free any
memory; it just resets the end of list marker. Unfortunately, this
is the only deletion function that exists. If you want to remove
an item identifier from the beginning of an IDL, the best you
can do is use a combination of ILGetNext and ILClone to make a
copy of the original list starting with the second ID in the list,
and then delete the original PIDL with ILFree. Trying to delete
IDs from the middle of the list would be even more complicated,
but we can’t imagine that such needs are very common.

Conclusion
PIDLs aren’t an exciting topic by any stretch of the imagination,
but a good understanding of their nature is essential to virtually
any task in programming with the Windows 95 shell. It’s unfor-
tunate that Microsoft has done such a poor job of publicizing the
information, which developers need to properly integrate their
applications with the shell. We hope this article has provided the
Delphi developer community with the basic foundation neces-
sary to undertake any project that will interface with the shell.
The mechanics of manipulating PIDLs may be dull, but we’re
sure your users won’t think the well-integrated applications you
can produce using this knowledge are boring. Get ready to write
something amazing! ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\DEC\DI9912KB.

Kevin Bluck is an independent contractor specializing in Delphi development. He
lives in Sacramento, CA with his lovely wife Natasha. He spends his spare time
chasing weather balloons and rockets as a member of JP Aerospace
(http://www.jpaerospace.com), a group striving to be the first amateur organiza-
tion to send a rocket into space. Kevin can be reached via e-mail at
kbluck@ix.netcom.com.

James Holderness is a software developer specializing in C/C++ Windows
applications. He also runs a Web site on undocumented functions in Windows
95 at http://www.geocities.com/SiliconValley/4942. He is currently working
for FerretSoft LLC, where he helps create the Ferret line of Internet search
tools at http://www.ferretsoft.com. James can be reached via e-mail at
james@ferretsoft.com or jholderness@geocities.com.
17 December 1999 Delphi Informant Magazine

http://www.jpaerospace.com
http://www.geocities.com/SiliconValley/4942
http://www.ferretsoft.com

18 December 1999 Delphi Informant Ma

Sound + Vision
Multimedia / Experts/ Tool Services / Delphi 1-5

By Alan C. Moore, Ph.D.

Figure 1: Th
A Multimedia Assembly Line
Part I: Enhancing a Delphi Expert

In early 1997, I wrote a Delphi Wizard (expert) to produce multimedia components with
WAV-file-playing capabilities. That original expert was limited in a number of respects.

Here we’ll extend that expert, adding greater flexibility and functionality. We’ll also pro-
vide a model for other complex experts that generate component code.
In this first installment of a two-part series, we’ll
begin with an overview of the expert and the
sound-playing capabilities it supports. Then we’ll
see how that functionality is implemented in the
expert and the components it produces. We’ll
discuss the expert interface and the code to
implement the user interface. Next month, we’ll
explore the code-generating engine.

Basic Functionality of the Expert
Although I’ve made some cosmetic changes to the
first page of the expert, it is functionally identical to
the first version (see Figure 1). The sound-playing
functionality of the generated components in the
earlier version was implemented through the com-
ponent’s two properties: the TSoundPlayOptions
enumerated type, which indicated how the sound
would be played; and the TSoundFile string, which
indicated the .WAV file to be played (which could
be the default if none were selected).

TSoundPlayOptions provided five options for sound
component creators/users (see Figure 2). All of these
options are realized using various Windows API
flags with the sndPlaySound function. A flag not
gazine

e first page of the expert.
shown in the figure, snd_NoDefault, is used with
each sound-playing option, so if a particular .WAV
file isn’t present, the default sound won’t be played.
In this new version, we’ll add a Boolean property,
PlayDefault, which will determine if the default
sound is played.

These flags are used in a case statement within the
OnClick method (in the old version), or the particu-
lar event method (in the new version). In the earlier
version, I used the older Windows 3.x function,
sndPlaySound. It’s declared in the mmsystem.pas file:

function sndPlaySound(lpszSoundName: PChar;
uFlags: UINT): BOOL; stdcall;

where lpszSoundName is the name of a .WAV file
and uFlags are the Windows API constants needed
to produce the desired result. In addition to sup-
porting this function for the Delphi 1 version of
this expert, we’ll also use the new PlaySound func-
tion in the 32-bit version:

function PlaySound(pszSound: PChar; hmod:
HMODULE;fdwSound: DWORD): BOOL; stdcall;

The additional parameter, hmod, is a resource file
containing sound resource(s). These two func-
tions are at the core of this expert and the com-
ponents it creates. As in the previous version, this
expert allows you to easily add sound-playing
properties and functionality to any component,
or a series of components. The previous version
was a standard expert. Here we’ll use an add-in
expert for the 32-bit version, retaining the stan-
dard version for the Delphi 1 version.

First, we’ll make it possible to sound-enable events
in addition to OnClick (the only one we could

Flag Description

snd_Sync Sound played synchronously; function
doesn’t return until after the sound is
finished playing.

snd_Async Sound played asynchronously; function
returns immediately and doesn’t wait
until the sound is finished playing.

snd_Memory Plays a sound file already in memory.
snd_Loop Used with snd_Async, plays sound contin-

uously until a call to sndPlaySound with
NIL filename.

snd_NoStop Don’t interrupt a sound currently playing
to play a new sound.

Figure 2: Flags used with the sndPlaySound function.

Sound + Vision

Flag Description

snd_Application Sound played using an application-
specific association.

snd_Alias pszSound parameter is a system-
event alias in the registry or WIN.INI.

snd_Alias_Id pszSound parameter is a predefined
sound identifier.

snd_Async Sound is played asynchronously with
PlaySound returning immediately.

snd_FileName pszSound parameter is a filename.
snd_Loop Sound is played repeatedly until

PlaySound is called with pszSound
at nil.

snd_Memory Sound event’s file is loaded in RAM,
memory pointed to by pszSound.

snd_NoDefault If the sound cannot be found, don’t
use default sound (returns silently).

snd_NoStop Sound event will yield to (not stop) a
sound event that is already playing.

snd_NoWait If the sound driver is busy, return
immediately without playing the
sound.

snd_Purge Sounds for the calling task are
stopped.

snd_Resource pszSound parameter is a resource
identifier; hmod identifies its instance.

snd_Sync Sound is played synchronously;
PlaySound returns after sound
completes.

Figure 3: Flags used in the PlaySound function.
enable in the older version). Then we’ll add functionality to allow
you to choose whether the default sound should play when no file is
chosen; we’ll also add the choice of whether a new sound will termi-
nate a sound already playing. Finally, we’ll expand the set of
SoundPlayOptions to include not playing a sound at all. In sum, we’ll
demonstrate how to build a fairly complex expert with added features
and options. Let’s begin by examining the new events supported.

More Events and Options
Which events to enable? I decided to include all those derived from
TWinControl (OnEnter, OnExit, OnKeyDown, OnKeyPress, and
OnKeyUp), and most of those derived from TControl through
Delphi 3 (OnClick, OnDblClick, OnDragDrop, OnDragOver,
OnEndDrag, OnMouseDown, OnMouseMove, OnMouseUp, and
OnStartDrag [in the 32-bit version]). We’ll see how this is imple-
mented when we examine the user interface.

So what options are we to add? A new property, SoundSource, indicates
the type of sound source to which the FileName parameter points. It’s
of the enumerated type, TSoundSource (ssAlias, ssAlias_ID, ssFilename,
ssMemory, ssResource, ssNone). The 16-bit version uses a subset of this
type, which works with sndPlaySound: ssFilename, ssMemory. Another
new Boolean property, Yield, determines if the requested sound will
interrupt a sound that is already playing. This property is connected
with the snd_NoStop flag. All of the flags associated with the PlaySound
function (introduced in Windows 95) are shown in Figure 3.

First, we’ll examine some of the main variables and structures used
to communicate between the various units. Then we’ll explore the
process of creating the new expert.

Basic Types and Data Structures
To implement this functionality, I needed to add several new types
and data structures to the expert. These are defined in SndTypes.pas,
shown in Listing One (beginning on page 21). We’ve already exam-
ined the new enumerated type, TSoundSource. As explained already,
you can now sound-enable any of the standard events for each new
component you generate. Each time you click on one of the event
check boxes, the expert needs to know which one it is so that it can
store the data selected in the proper place. We use the EventSelected
enumerated type to accomplish this:

EventSelected = (esClick, esDragDrop, esDragOver,
esEndDrag, esEnter, esExit, esKeyDown, esKeyPress,
esKeyUp, esMouseDown, esMouseMove, esMouseUp,
esStartDrag);
19 December 1999 Delphi Informant Magazine
The expert also needs to keep track of the status of each check box
and the possible sound event class it may eventually produce. We use
another enumerated type to accomplish this:

EventCheckBoxStatus =
(ecbsUndefined, ecbsDefined, ecbsChecked);

The first possibility, ecbsUndefined, indicates the check box has never
been checked. The second, ecbsDefined, indicates that data has been
entered for the particular check box. Then, if you enter data,
uncheck the box, and then decide to check it again, the original data
entered in the popup dialog box will appear and can be edited. The
final possibility, ecbsChecked, simply keeps track of the checked sta-
tus of the check box and is used in the component-producing
engine, which we’ll be discussing toward the end of this article. A
value for each event/check box is stored in the following array:

EventCheckBoxArray:
array [0..EventMax] of EventCheckBoxStatus;

Because event names are used in constructing the new classes we’ll
be discussing below, we need to keep track of them in a constant
array whose members correspond to the event/check boxes:

EventNames: array [0..MaxEvents] of string =
('Click', 'DragDrop', 'DragOver', 'EndDrag', 'Enter',
'Exit', 'KeyDown', 'KeyPress', 'KeyUp', 'MouseDown',
'MouseMove', 'MouseUp', 'StartDrag');

Sound + Vision
The information from the dialog box applying to each sound event
(see Figure 4) is stored in the following structure:

SoundFactors = packed record
SoundSource : TSoundSource;
Yield : Boolean;
WavFileDefault : Boolean;
DefaultWavFile : TFileName;
SoundPlayOptions : TSoundPlayOptions;

end;

Because there are 13 possible sound events (12 in Delphi 1), the
data is stored in a public array of the expert class:

SoundFactorsArray: array [0..MaxEvents] of SoundFactors;

Now that you’ve been introduced to the main variables and data
structures used in this expert, you’ll be able to study the code with
greater comprehension. Now we need to look at the steps involved
in writing the code. Consider three basic steps in expert creation:
1) Creating the Delphi expert interface
2) Creating the user interface
3) Writing the expert engine

We’ll have quite a bit to say about each of these major steps. We’ll
begin by discussing the Delphi expert interface. In this case, we’ll
create a library project that will work in either 16-bit or 32-bit
Delphi environments.

Updating the Delphi Expert Interface
Every Delphi expert must have an interface so Delphi can load it,
execute it, and unload it. This interface varies, depending on the
type of expert you’re creating. There were three types of experts in
Delphi 1 with a new type, the add-in expert, starting with Delphi
2. Add-in experts are similar in many ways to standard ones, but
are installable anywhere in Delphi’s menu structure. As mentioned
already, we’ve added this new type of expert for all of the 32-bit
versions. To support both 16- and 32-bit versions, we’ve had to
include many conditional compilation statements in the project
file shown in Listing Two (beginning on page 22) and unit files.

Certain methods are required in each of the three original expert
types: Execute, GetIDString, GetName, and GetStyle. Standard and
add-in experts require additional methods. Standard experts include
two unique methods, GetMenuText and GetState. Add-in experts use
all the basic methods except Execute (we keep it for convenience
here, however), and add these methods:

function GetAuthor: string; override;
procedure RunSoundExpert(Sender: TIMenuItemIntf);
constructor Create;
destructor Destroy; override;

RunSoundExpert is triggered when our menu option is clicked
and calls the Execute method. You immediately see the dialog box
we saw in Figure 1. How do we add our menu item? The Create
method is where we set up our new menu item by using tool ser-
vices to access Delphi’s menu structure. Because we create a new
menu item here (NewMenuItem), we must also free it in the
Destroy method.

To use tool services, you must first initialize them. You accom-
plish this with the InitExpert function, which isn’t part of our
expert class definition. It has a slightly different format in each
20 December 1999 Delphi Informant Magazine
Delphi version
(again, see
Listing Two).
The functions
in the 32-bit
versions end
with stdcall
and export; in
Delphi 1 they
end with only
export. The
function defi-
nitions are indicated in the following conditional define:

{ $IFDEF WIN32 }
function InitExpert(ToolServices: TIToolServices;

RegisterProc: TExpertRegisterProc; var Terminate:
TExpertTerminateProc): Boolean; stdcall; export;

{ $ELSE }
function InitExpert(ToolServices: TIToolServices;

RegisterProc: TExpertRegisterProc; var Terminate:
TExpertTerminateProc): Boolean; export;

{ $ENDIF }

This function is also used to register the expert with Delphi using
the RegisterProc method. There are many differences between the 16-
bit and 32-bit versions of this expert. These are clearly indicated
with conditional statements.

If you need to free any memory or perform other cleanup (which
we didn’t in this instance), you’ll need a DoneExpert procedure,
which is included for your reference. For Delphi 1 only, a
FaultHandler function must also be included.

Now that we’ve fully examined the expert interface, let’s look at
the user interface implemented in SndExp1.pas (not shown here
due to space constraints). The entire project is available on disk or
for download; see end of article for details. Note that global vari-
ables used in this and other units are declared in SndTypes.pas
(again, see Listing One).

Creating a User Interface
Stage two, creating the expert’s user interface, is a more familiar
task for most of us. As in the previous version, the interface is a
modal dialog box with two pages. The first page is similar to that
of the first version; the second page is completely new. In both
pages, the choices you make drive the expert’s engine, which gen-
erates the code for the sound component in the third stage. Let’s
discuss the details of that interface.

The main form consists of a TNotebook at the top and a TPanel
at the bottom. The TNotebook has two pages and the TPanel con-
tains five TBitBtns: CancelBtn, PrevBtn, HelpBtn, NextBtn, and
FinishBtn. PrevBtn moves to page one of the notebook, NextBtn
moves to page two, and FinishBtn writes and displays the new
sound component. The form contains two standard dialog boxes:
SaveDialog and OpenDialog. The SaveDialog dialog box is used
to select a file in which to save the final results (sound compo-
nent); OpenDialog allows us to select a default .WAV file. So far,
all of this applies to both versions.

The first notebook page (seen in Figure 1) contained the same
controls in each version: four TLabels, three TEdits, and a
TComboBox (third control). The controls on this page allow the
user to set the name for the new component, the unit in which

Figure 4: The Sound Playing Options dialog box.

Sound + Vision

Use of Method

t(X) Where X is the index number of a module, this
method returns the number of components regis-
tered in that module.

(X,Y) Where X is the index number of a module and Y
is the index number of a component registered in
that module, this method returns the name of that
component.
Returns the number of registration modules (not
component units) in the VCL (Complib.dcl).
Where X is the index number of a module, this
method returns the name of that module.

vices methods used in the expert to get information on

Figure 6: On the second page of the expert, choose the events
you want to implement.
to save it, its ancestor, and the additional
units to include in the uses clause (usual-
ly the ancestor’s unit at a minimum).

The second TEdit and the TCombo behave
in unusual ways. By writing an OnClick
(and OnEnter) method, clicking on or
moving to the second TEdit automatically
brings up TSaveDialog so we can choose a
file name and directory for our new com-
ponent. The PopulateComboBox method
automatically fills the check box with the
names of all components installed in the
VCL. It uses some of Delphi’s tool services
to accomplish this. Let’s see how the
magic works.

Using Tool Services to Access Installed Components
Delphi’s tool services, defined in the ToolIntf.pas unit, can be very
useful in writing experts. They provide background information and
access to Delphi’s inner workings. For example, we can find out the
number of forms or units used in a project with GetFormCount and
GetUnitCount, respectively. In addition to retrieving information, we
can perform useful actions like opening a project (OpenProject),
opening a file (OpenFile), saving a project (SaveProject), or saving a
file (SaveFile), all from within an expert we write.

There are four special methods in the tool services related specifical-
ly to components installed in the VCL (Complib.dcl). The methods
used in this expert are shown in Figure 5.

In both versions of this expert, I used all but the last method. Take a look
at the TSoundCompForm.PopulateComboBox method in SndExp1.pas to
see how they’re used. We used two loops within a try..finally block. The
outer loop iterated through all the installed modules:

for CurrentMod := 0 to NumMods 1 do begin

and the inner loop iterated through the components registered in
each module if there were any:

if (NumComps > 0) then
for CurrentComp := 0 to NumComps 1 do begin

We’ll have a bit more to say about the tool services when we reach
the end of this section and discuss the Finish button. First, let’s take a
look at the second page.

On the second page of the expert, you can check the events you want
to implement in the new component (see Figure 6). Whenever a new
event is checked, another dialog box prompts for the parameters for
that sound event (refer to Figure 4). This dialog box always appears
with either the default values checked (in this case none), or the pre-
viously selected values (if the event had been selected previously).

You must choose at least one event before the Finish button
becomes enabled. When you click on Finish the expert closes, and
the generated code comes up in the Delphi IDE editor. This is
accomplished with another ToolServices function:

iTools.OpenFile(UnitName);

where iTools identifies a local copy of tool services.

Method

GetComponentCoun

GetComponentName

GetModuleCount

GetModuleName(X)

Figure 5: The tool ser
installed components.
21 December 1999 Delphi Informant Magazine
Conclusion
We’ll have to leave it there for now. We’ve discussed most of the
basic issues involved with the expert interface and user interface.
Next month we’ll discuss the expert’s component-creating engine. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\DEC\DI9912AM.

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applications
with the Borland languages for more than 10 years. He has published a number of
articles in various technical journals. Using Delphi, he specializes in writing custom
components and implementing multimedia capabilities in applications, particularly
sound and music. You can reach Alan on the Internet at acmdoc@aol.com.
Begin Listing One — SndTypes.pas
unit Sndtypes; { Global Types for SndExprt Project. }

interface

uses SysUtils;

type
String80 = string[80];
String30 = string[30];
String15 = string[15];
String2 = string[2];

Sound + Vision
TSoundPlayOption = (spPlayReturn, spPlayNoReturn,
spPlayContinuous, spEndSoundPlay, spPlayNoSound);

TSoundPlayOptions = set of TSoundPlayOption;

SoundFactors = packed record
Yield : Boolean;
WavFileDefault : Boolean;
DefaultWavFile : TFileName;
SoundPlayOptions : TSoundPlayOptions;

end;

TSoundSource =
{ $IFDEF VER80 }

(ssFilename, ssMemory);
{ $ELSE }

(ssAlias,ssAliasID,ssFilename,ssMemory,ssResouce);
{ $ENDIF }

{ Current event selected in the Expert. }
EventSelected = (esClick, esDragDrop, esDragOver,

esEndDrag, esEnter, esExit, esKeyDown, esKeyPress,
esKeyUp, esMouseDown, esMouseMove, esMouseUp
{ $IFNDEF VER80 }

, esStartDrag
{ $ENDIF }
);

EventCheckBoxStatus =
(ecbsUndefined, ecbsDefined, ecbsChecked);

const
{ Number of events user can sound-enable. 0-based;

actual number of events is one more. }
{ $IFNDEF VER80 }

EventMax = 12;
{ $ELSE }

EventMax = 11;
{ $ENDIF }

BasicEventNames: array [0..EventMax] of String15 =
('Click', 'DragDrop', 'DragOver', 'EndDrag', 'Enter',
'Exit', 'KeyDown', 'KeyPress', 'KeyUp', 'MouseDown',
'MouseMove', 'MouseUp'

{ $IFNDEF VER80 }
, 'StartDrag'

{ $ENDIF }
);

EventNames: array [0..EventMax] of String15 =
('Click', 'DragDrop', 'DragOver', 'DoEndDrag',
'DoEnter', 'DoExit', 'KeyDown', 'KeyPress', 'KeyUp',
'MouseDown', 'MouseMove', 'MouseUp'

{ $IFNDEF VER80 }
, 'DoStartDrag'

{ $ENDIF }
);

ParametersArray: array [0..8] of String80 =
('', { For Click, DoEnter, DoExit }
'Source: TObject; X, Y: Integer', { For DragDrop }
'Source: TObject; X, Y: Integer; State: TDragState;’ +
' var Accept: Boolean', { For DragOver }
'Target: TObject; X, Y: Integer', { For EndDrag }
'var Key: Word; Shift: TShiftState', { KeyDown,KeyUp }
'var Key: Char', { For KeyPress }
'Button: TMouseButton; Shift: TShiftState; ' +
'X, Y: Integer', { For MouseDown and MouseUp }
'Shift: TShiftState; X, Y: Integer', { For MouseMove }
'var DragObject: TDragObject'); { For StartDrag }

ParamsArray: array [0..8] of String80 =
('', { For Click, DoEnter, DoExit }
'(Source, X, Y)', { For DragDrop }
'(Source, X, Y, State, Accept)', { For DragOver }
'(Target, X, Y)', { For EndDrag }
'(Key, Shift)', { For KeyDown and KeyUp }
22 December 1999 Delphi Informant Magazine
'(Key)', { For KeyPress }
'(Button, Shift, X, Y)', { For MouseDown and MouseUp }
'(Shift, X, Y)', { For MouseMove }
'(DragObject)'); { For StartDrag in 32-bit versions }

EventPrefixes: array [0..EventMax] of String2 =
('ck', 'dd', 'do', 'ed', 'en', 'ex', 'kd', 'kp', 'ku',
'md', 'mm', 'mu'

{ $IFNDEF VER80 }
, 'sd'

{ $ENDIF }
);

fdwSoundFlags: array [0..3] of String15 =
('SND_ALIAS', 'SND_FILENAME', 'SND_RESOURCE', 'NIL');

var
{ Storage for properties. }
SoundFactorsArray: array [0..EventMax] of SoundFactors;
{ Used for formatting new types in CompGen1. }
SoundOptions: array[0..EventMax] of Integer;
{ Holds the string value for the 3rd PlaySound

parameter from the fdwSoundFlags array. }
fdwSoundValue: String15;

AnEventSelected: EventSelected;
EventIsEnabled: array [0..12] of Boolean;
EventCheckBoxArray: array [0..12] of EventCheckBoxStatus;

implementation

end.

End Listing One
Begin Listing Two — SndExprt.dpr
{ TSoundExpert, Sound Component Delphi Expert

(c) 1996, 1999 Alan C. Moore. }
library SNDEXPRT;

uses
{ $IFNDEF VER80 }

ShareMem,
{ $ENDIF }
Forms,
WinTypes,
ExptIntf,
ToolIntf,
VirtIntf,
SysUtils,
WinProcs,
Sndtypes in 'SNDTYPES.PAS',
OptDlg in 'OptDlg.pas' { SoundPlayingOptions },
compgen in 'compgen.pas',
SndExp1 in 'sndexp1.pas' { SoundCompForm };

type { Expert Class for a Standard Expert. }
TSoundExpert = class(TIExpert)

function GetName: string; override;
function GetComment: string; override;
function GetStyle: TExpertStyle; override;
function GetState: TExpertState; override;
function GetMenuText: string; override;
function GetIDString: string; override;
{ $ifndef Ver80 }
function GetAuthor: string; override;
procedure RunSoundExpert(Sender: TIMenuItemIntf);
constructor Create;
destructor Destroy; override;
{ $endif }
procedure Execute; override;

private
{ $IFNDEF VER80 }
NewMenuItem: TIMenuItemIntf;
{ $ENDIF }

Sound + Vision
end;

{ Expert Methods }
{ $ifndef Ver80 }
constructor TSoundExpert.Create;
var

MainMenu : TIMainMenuIntf;
MainMenuItems, ComponentMenu : TIMenuItemIntf;

begin
inherited Create;
MainMenu := nil;
MainMenuItems := nil;
ComponentMenu := nil;
NewMenuItem := nil;
try

try
MainMenu := ToolServices.GetMainMenu;
MainMenuItems := MainMenu.GetMenuItems;
ComponentMenu := MainMenuItems.GetItem(6);
NewMenuItem := ComponentMenu.InsertItem(0, 'S&ound',

'TSoundComponentExpert', '', 0, 0, 0,
[mfVisible, mfEnabled], RunSoundExpert);

finally
ComponentMenu.Free;
MainMenuItems.Free;
MainMenu.Free;

end;
except

ToolServices.RaiseException(ReleaseException);
end;

end;
{ $ENDIF }

{ Exceptions must be handled this way. }
procedure HandleException;
begin

ToolServices.RaiseException(ReleaseException);
end;

{ $ifndef Ver80 }
procedure TSoundExpert.RunSoundExpert;
begin

try
ExecuteExpert(ToolServices);

except
ToolServices.RaiseException(ReleaseException);

end;
end;

destructor TSoundExpert.Destroy;
begin

NewMenuItem.Free;
inherited Destroy;

end;

function TSoundExpert.GetAuthor: string;
begin

try
Result := 'Alan C. Moore';

except
HandleException;

end;
end;
{ $endif }

function TSoundExpert.GetName: string;
begin

try { try/except blocks needed for each expert method. }
Result := 'Sound Component Delphi Expert';

except
HandleException;

end;
end;

function TSoundExpert.GetComment: string;
begin

try
23 December 1999 Delphi Informant Magazine
Result := 'Delphi Expert to add Sound to a Component';
except

HandleException;
end;

end;

function TSoundExpert.GetStyle: TExpertStyle;
begin { All experts have this method. }

try
{ $ifndef Ver80 }

Result := esAddIn;
{ $else }

Result := esStandard;
{ $endif }

except
HandleException;

end;
end;

function TSoundExpert.GetState: TExpertState;
begin { Possible states of menu item. }

try
Result := [esEnabled];

except
HandleException;

end;
end;

function TSoundExpert.GetMenuText: string;
begin

try
Result := 'Sound Component'; { Help menu Text. }

except
HandleException;

end;
end;

function TSoundExpert.GetIdString: string;
begin

try
Result := 'TSoundExpert'; { Unique ID for expert. }

except
HandleException;

end;
end;

procedure TsoundExpert.Execute;
begin { Executes our DLL in main form unit. }

try
ExecuteExpert(ToolServices); { In sndexp1.pas. }

except
HandleException;

end;
end;

procedure DoneExpert; export; { Clean up code, if needed. }
begin

{ Exit code here if needed. }
end;

{ Delphi 2/3/4 and Delphi 1-specific ways
of accessing TIToolServices. }

{ $IFDEF WIN32 }
function InitExpert(ToolServices: TIToolServices;

RegisterProc: TExpertRegisterProc; var Terminate:
TExpertTerminateProc): Boolean; stdcall; export;

{ $ELSE }
function InitExpert(ToolServices: TIToolServices;

RegisterProc: TExpertRegisterProc; var Terminate:
TExpertTerminateProc): Boolean; export;

{ $ENDIF }
begin

{ Make sure this is the first and only
instance of these services. }

Result := ExptIntf.ToolServices = nil;
if not Result then

Exit;

Sound + Vision
ExptIntf.ToolServices := ToolServices;
if ToolServices <> nil then

Application.Handle := ToolServices.GetParentHandle;

Terminate := DoneExpert; { We know where to exit. }

RegisterProc(TSoundExpert.Create);
end;
{ $IFDEF WIN32 }
{ $ELSE }

function FaultHandler(FaultID: Word; FaultAddr: Pointer):
TFaultResponse; export;

begin
DefaultExceptHandler(FaultID, FaultAddr);

end;
{ $ENDIF }

exports
{ $IFNDEF WIN32 }

FaultHandler name FaultHandlerSignature resident,
{ $ELSE }
{ $ENDIF }
InitExpert name ExpertEntryPoint resident;

begin
end.

End Listing Two
24 December 1999 Delphi Informant Magazine

25 December 1999 Delphi Informant Ma

In Development
Automation / COM

By Ron Loewy
An Automation Server
Object Model Design and Implementation

T his article describes how to design an Automation server, and build it with Delphi. It
also describes how to test the server by implementing it as a plug-in, and using

script to put it though its paces. Let’s begin with a review of the technology involved,
and terminology used to describe it.
An application is an Automation server when it
allows an external application (or scripting tool) to
control it programmatically, via a COM interface.
The Microsoft Office applications (Word, Excel,
etc.) are good examples of Automation servers.
For example, many applications use Word’s mail
merge capabilities from external applications to
create letters, reports, and forms populated with
data from the managing (client) application. Excel
is similarly used by many enterprise applications
as a calculation engine, e.g. a pre-defined spread-
sheet is created and data is transferred to Excel by
the client application (known as the Automation
client) to perform complex calculations. Other
examples include network charting applications
that employ general-purpose tools such as Visio or
Micrografx Charter to diagram a network.

Scripting is a feature that allows “power users” to
automate tasks in the application by writing a
script using a language integrated with the appli-
cation. Microsoft offers VBA (Visual Basic for
Applications) as the scripting language for its
Office suite. VBA is also now widely available in
non-Microsoft products, such as AutoCAD and
Visio. Microsoft Internet Explorer allows you to
use VBScript or JavaScript, Netscape Navigator
offers JavaScript, and other tools offer more
obscure scripting languages.

Plug-ins are externally compiled objects that “plug
in” the application and add functionality via new
menu commands, objects that can be manipulat-
ed, etc. Internet Explorer uses plug-ins to add new
functionality. The Alexa Internet Explorer plug-in
is a good example of a third-party tool that
enhances the use of a mainstream application via a
plug-in. Although Delphi doesn’t use COM to
implement plug-ins, the Open Tools API is a
framework that allows you to add new objects
gazine
(project and form experts) and plug-ins (add-ins
and Help menu experts) to Delphi.

Why COM?
There are some advantages to using COM as a
way to create an application extension framework.
COM defines a standard method to offer
Automation. Any application that knows how to
talk to an Automation server will be able to auto-
mate your application via COM interfaces.

Excellent scripting engines are available free from
Microsoft in the form of JavaScript (JScript) and
VBScript. These scripting engines require an inter-
face into your application via COM interfaces and
standard Automation objects. Many users are famil-
iar with Visual Basic, and VBScript is an acceptable
substitute. Many Internet warriors are familiar with
JavaScript, and Microsoft’s JScript is a well-
debugged version of this Java look-alike scripting
engine. Using ActiveScript, you can provide
VBScript, JScript, or both (see “Delphi 3 ActiveX”
by Dan Miser in the February, 1998 issue of Delphi
Informant Magazine for more about ActiveScript
usage from Delphi). In fact, if you write the code
to support one of these languages, you’ll need to
make minimal changes to support the other. Other
scripting engines (e.g. Perl) are available that will
also plug into an ActiveScript-enabled application.

Unlike DLLs that require extensive documenta-
tion, COM-based Automation objects are “self
documenting” via type libraries. Though you
should always provide documentation for an
application extension framework, you won’t need
to create interface modules for every language you
want to support, and you won’t be limited to tools
that can call DLLs. (Note: Delphi’s Open Tools
API was created with Delphi 1 and has been
enhanced since that time.)

In Development
Although we often hear that Delphi uses Delphi to extend itself,
Delphi allows experts and add-ins created with other tools to be
installed. The Open Tools API, however, must provide special func-
tions to allow C/C++ functions to call and manipulate Delphi func-
tions, objects, and data structures. Even though COM plug-ins have
more overhead than Delphi plug-ins, I have the feeling that Delphi
would benefit from the cleaner approach to application extension
via COM. (The Delphi debugger is implemented as a COM object
of some sort, so Inprise developers are also aware of the benefits of
COM for application extensibility.)

Planning the Extension Framework
The most important issue to understand about providing an application
extension framework is the functionality of your application you want
to expose — not the things the plug-ins, scripts, or external applications
will have to do. COM is an object-based architecture. Your application
should expose a set of objects that can be manipulated by the “extend-
ing” agents. The term “object model” seems to be the standard way to
refer to an application-specific extension API. Examples include COM
(Component Object Model) and Internet Explorer’s (and the W3C)
DOM (Document Object Model), which is used to describe the objects
that make an HTML page (and with MSIE 5 XML documents). Even
IBM used SOM (System Object Model) in the past. (When the sample
application that provides template-based authoring had to have an
extension framework, I named it Authoring Templates Object Model
[ATOM] with the purpose of writing a white paper in the future titled
“Splitting the ATOM.”)

The root object of the Word object model is named Application, an
object that provides access to Word and provides sets of collections
(arrays) for sub-objects used in the application. In Word’s case, the
Application object provides access to the documents edited by the
application, and a Document object that can be obtained from the
application provides access to paragraphs, images, links, and other
collections. Similarly, Excel’s Application object provides access to
worksheet objects that in turn provide access to cells.

When you design your object model, try to understand the data struc-
tures and objects with which your application is built. In the sample
application, the code is nothing more than a visual way to represent a
hierarchical database of objects. It made sense to provide access to this
database via a single object obtained from the Application object. This
object is named Project in the sample application; it provides access to
all the nodes in the hierarchy. If your application manages relational
databases, a good idea would be to expose common tables as objects
via the root of the hierarchy. If your application is used for the cre-
ation of some documents, it would make sense to expose “document
objects” (these documents don’t need to be called documents; they can
be worksheets, charts, images, etc.) as objects.

Once you understand what objects and data structures you want to
expose (these provide the “guts” of your application), it’s time to think
of the way you want extensions to be able to manipulate the user
interface side of the application. This usually means ways to expose
the menubar, commandbars, and other elements of the application. I
will provide sample code that exposes and manipulates the menubar, a
common and popular way to offer scripting and extensibility.

Implementing an Object Model
If you’ve created your application using object-oriented techniques,
it’s easy to encapsulate your application’s objects as Automation
objects exposed in an object model. Assuming you use the conven-
tion of naming the object model root Application, it would be a
26 December 1999 Delphi Informant Magazine
good idea to hold a field in your application’s main form that points
to an instance of the Application Automation object’s interface. This
object can be instantiated in the OnCreate event of the main form.
In the sample application, I created an Automation object named
eAuthorApp (using Delphi’s Automation object expert on the
ActiveX page of the New Items dialog box). The main form holds a
field using the following declaration in its private section:

FeAuthorApplication : IeAuthorApp;

and exposes it in the public section:

property eAuthorApplication: IeAuthorApp
read FeAuthorApplication;

Finally, the OnFormCreate event handler includes the following code
to instantiate the object:

try
FeAuthorApplication := TeAuthorApplication.Create;

except
ShowMessage(

'eAuthor.eAuthorApplication could not be created');
end;

Providing access to the other objects in the object model is done via
properties and methods of the Automation object. Because the sam-
ple application’s database objects descend from a common ancestor,
I created a virtual CreateAutomationObject method in the ancestor
and created a default Automation object that applies to every object
in the database. Some of the objects that descend from this common
ancestor override CreateAutomationObject and return a pointer to an
Automation object that provides more functionality than the default
object. Your design will have to be based on the actual design of
your objects and data structures.

My application’s Application object provides an entry into the database
object model by exposing a Project property defined of type IDispatch.
(Remember that properties and methods defined in Automation objects
must be defined using the Type Library editor and implemented in the
implementation unit). Because the sample application has only one
entry point into the database object model and because this entry point
is commonly used, I want to cache it to see that my implementation of
TeAuthorApplication includes a private pointer to IDispatch:

ProjectObject : IDispatch;

The Get_Project method that implements the Project property access
(it’s a read-only property) is implemented as follows:

function TeAuthorApplication.Get_Project: IDispatch;
begin

if (not Assigned(ProjectObject)) then begin
ProjectObject :=

eAuthorSite.HyperTextProject.CreateAutomationObject;
IUnknown(ProjectObject)._AddRef;

end;
Result := ProjectObject;

end;

As you can see, the main form holds a global HyperTextProject Delphi
object and calls the CreateAutomationObject method to retrieve a
pointer to its IDispatch interface. Notice the need to call _AddRef to
ensure the object’s reference count will keep it cached in memory.
Obviously, I need to free it in the destructor:

In Development

function TActiveScriptSite.GetItemInfo(
ItemName: WideString; dwReturnMask: DWord
out UnkItem: IUnknown; out TypeInfo: ITypeInfo): HResult;

var
ObjDispatch : IDispatch;

begin
{ Does the engine want the Automation object's

IUnknown pointer? }
if (dwReturnMask = SCRIPTINFO_IUNKNOWN) and

(ItemName = 'Application') then
UnkItem := eAuthorSite.eAuthorApplication;

if (dwReturnMask = SCRIPTINFO_IUNKNOWN) and
(ItemName = 'Project') then

UnkItem := eAuthorSite.eAuthorApplication.Project;

{ Does the engine want the Automation object's
destructor TeAuthorApplication.Destroy;
begin

if (Assigned(ProjectObject)) then
IUnknown(ProjectObject)._Release;

end;

Now let’s examine the CreateAutomationObject for my object’s ancestor:

function TObjectWithFields.CreateAutomationObject;
var

NewObj: TEditableObject;
begin

NewObj := TEditableObject.Create;
NewObj.WrappedObject := Self;
Result := NewObj;

end;

Remember, TObjectWithFields is the ancestor object to all the
objects in the hierarchical database managed by the sample applica-
tion. EditableObject is the Automation object created to represent
this object from the COM side of things.

The interesting thing to notice is that TEditableObject’s implementa-
tion has a WrappedObject property that holds a TObjectWithFields.
Using this technique, a COM object can always be created from a
Delphi object calling its CreateAutomationObject, and the Delphi
object (which is always in memory) can be referred from the COM
object by referring to its WrappedObject property.

Notice that CreateAutomationObject doesn’t cache the object in
memory using the AddRef/Release method of reference counting.
Because the Delphi objects are always “alive,” we can always use
them to create the COM objects. The COM objects are created and
stay alive only for the duration they are needed by the external
application/script/plug-in.

Because every object in the sample application descends from
TObjectWithFields, I wanted every COM object that represents a
descendant of this object to retain EditableObject’s methods and
properties. This is surprisingly easy to do when you create a new
Automation object (e.g. AutoProject represents the THyperTextProject
object referred to previously). I inherited the interface defined for
this object in the type library from IEditableObject and inherited the
implementation object (TAutoProject in this example) from
TEditableObject (see Figure 1).

Debugging Your Object Model
Before you continue with the design of a plug-in framework, you
27 December 1999 Delphi Informant Magazine

EditableObject EditableObjectCreateAutomationObject

CreateAutomationObject

CreateAutomationObject

CreateAutomationObject

Descends From Descends From

AutoProject

AutoHtmlPage

AutoXMLDocument

THtmlPage

TXMLDocument

THyperTextProject

Figure 1: A COM-based object model as it is implemented from
a hierarchy of Delphi objects.
must ensure the object model you designed works as expected and
provides access to functionality needed by extension “clients.” When
I was ready to test and debug my COM object model, I considered
writing an Automation controller application with Delphi to test the
server. Although this approach would work, I decided to test my
object model by developing the scripting code and testing the object
model from within the sample application. This made the concept
of setting debug breakpoints and writing scripting code to test new
objects easy and compile-free. (Again, see “Delphi 3 ActiveX” in the
February, 1998 issue of Delphi Informant Magazine for more about
ActiveScript and its inclusion in Delphi applications.)

For my purposes, I added a Scripts menu option to the main menu
of the main form. This option opens a script dialog box that
includes two TMemo components: one used as an editor, and the
other as a console to test the results of the script.

In the TActiveScriptSite implementation of my ActiveScript unit, I
exposed the Application and Project objects using the code shown
in Figure 2.

Finally, I connected the console to the Application Automation
object by adding Write, WriteLine, and ClearConsole methods. The
Write implementation follows:

procedure TeAuthorApplication.Write(
const AText: WideString);

begin
if (Assigned(eAuthorSite.Console)) then

eAuthorSite.Console[eAuthorSite.Console.Count - 1] :=
eAuthorSite.Console[eAuthorSite.Console.Count - 1] +
AText;

end;
type information? }
if (dwReturnMask = SCRIPTINFO_ITYPEINFO) and

(ItemName = 'Application') then begin
ObjDispatch := eAuthorSite.eAuthorApplication;
{ Get a handle to our Automation object's

type library. }
ObjDispatch.GetTypeInfo(0,0,TypeInfo);

end;

if (dwReturnMask = SCRIPTINFO_ITYPEINFO) and
(ItemName = 'Project') then begin

ObjDispatch := eAuthorSite.eAuthorApplication.Project;
ObjDispatch.GetTypeInfo(0,0,TypeInfo);

end;

Result := S_OK;
end;

Figure 2: Exposing the Application and Project objects.

In Development
Console is a global TStrings property of the main form. When the
Application object needs to write a line to the console, it simply adds
it to the console.

Providing Menubar Access via COM Interfaces
Now that we have an object model in place, it’s time to think of
ways to provide access to the user interface of the application. A
28 December 1999 Delphi Informant Magazine

function TeAuthorApplication.FindMenu;

function FixCaption(ACaption: string): string;
var

g : Integer;
begin

Result := ACaption;
g := pos('&', Result);
while (g > 0) do begin

Result := copy(Result, 1, g - 1) +
copy(Result, g + 1, length(Result) - g);

g := pos('&', Result);
end;

end;

function FindByLevel(PartialPath: string;
MenuRoot: TMenuItem): TMenuItem;

var
FirstLevel, RestOfPath : string;
i, p : Integer;

begin
Result := nil;
p := pos('|', PartialPath);
if (p > 0) then

begin
FirstLevel := Copy(PartialPath, 1, p - 1);
RestOfPath := Copy(PartialPath, p + 1,

length(PartialPath) - p);
end

else
begin

FirstLevel := PartialPath;
RestOfPath := '';

end;

i := 0;
while (i < MenuRoot.Count) do begin

if (FixCaption(
MenuRoot.Items[i].Caption) = FirstLevel) then

Result := MenuRoot.Items[i];
inc(i);

end;
if (Assigned(Result) and (RestOfPath <> '')) then

Result := FindByLevel(RestOfPath, Result);
end; { FindByLevel }

begin
Result := FindByLevel(MenuPath, eAuthorSite.Menu.Items);

end; { TeAuthorApplication.FindMenu }

Figure 3: The FindMenu function to find a menu item based on
its path.

type
TAddInObject = class(TAutoObject, IAddInObject,

IeAuthorApplicationAddIn, IeAuthorMenuHandler)
private

eAuthorApp : IeAuthorApp;
public

// IeAuthorApplicationAddIn
procedure RegisterMenus; safecall;
procedure SetApplication(

const App: IeAuthorApp); safecall;
// IeAuthorMenuHandler
procedure Execute(Tag: Integer); safecall;

end;

Figure 4: TAddInObject as an Automation object.
common feature to expose is the menubar. The Application (COM)
object of the example program exposes two functions: MenuExists,
which determines if a menu path (e.g. File | Save) exists; and Menu,
which returns an Automation object that represents a specific menu
item based on a menu path provided.

I wrote the FindMenu function (see Figure 3) to find a menu item
based on its path. The only interesting part of this function is strip-
ping ampersand characters (used to determine menu hot-keys) from
menu item captions.

I defined an Automation object named AutoMenuItem that has a
WrappedMenu property (like the WrappedObject property of
EditableObject objects discussed earlier). This COM object wraps
TMenuItem and exposes its properties and methods (like Checked,
Enabled, Caption, Hint, ShortCut, Execute, SubItem, etc.). In addi-
tion, AutoMenuItem has a SetHandler method required for plug-ins.
We’ll discuss this function later.

The sample application includes code that demonstrates how to
expose the menu from an Application object and includes an imple-
mentation of a Menu Automation object. Once this mechanism is in
place, it’s easy to activate menu commands from a script or an
automating client using code such as this JavaScript example:

Application.Menu("File|Save").Execute();

Menu access becomes more important once we need to discuss the
issue of plug-ins.

Setting Plug-in Rules
A plug-in is a separately compiled code module that can be “plugged”
into the application at run time. Typically, the plug-in adds entries to the
application’s menubar. When the user chooses a menu item that acti-
vates the plug-in, the plug-in needs to take over execution. It will then
usually converse with the application via the application’s object model.

In the sample application, I defined two interfaces that must be
implemented by a plug-in:

IeAuthorApplicationAddIn, which defines two methods: one that
receives a reference to the application’s object model root
(SetApplication); and one that registers the plug-in’s menus with
the application (RegisterMenus).
IeAuthorMenuHandler, which defines the Execute function that
is called when a menu item associated with the plug-in is select-
ed by the user.

Figure 4 shows a sample plug-in that adds an entry to the end of the
Help menu. When this menu item is selected, it displays a dialog
box. TAddInObject is defined as an Automation object and it imple-
ments the two interfaces mentioned previously.

SetApplication stores the object model root in the eAuthorApp variable:

procedure TAddInObject.SetApplication;
begin

eAuthorApp := App;
end;

RegisterMenus uses the menu facilities of the Application object to
add a new menu entry. Notice the use of the AutoMenuItem’s
SetHandler method (see Figure 5). We’ll discuss this method in
the next section.

In Development

procedure TAddInObject.RegisterMenus;
var

NewMenu : OleVariant;
TheMenu : IAutoMenuItem;

begin
TheMenu := eAuthorApp.Menu('Help') as IAutoMenuItem;
NewMenu := TheMenu.AddSubItem;
NewMenu.Tag := 3;
NewMenu.Caption := 'Add In!';
NewMenu.SetHandler(Self as IeAuthorMenuHandler);

end;

Figure 5: Adding a new menu entry.

Figure 6: The sample application at run time.
Finally, Execute is simple:

procedure TAddInObject.Execute;
begin

ShowMessage('Add In Tag ' + intToStr(Tag));
end;

Notice the use of the Tag property to store information about a
menu item. This allows a single plug-in to register multiple menu
items, and differentiate between them in the Execute method.

Adding Plug-in Support
To have the application recognize plug-ins, two issues need to be
resolved: a method to register plug-ins with the application, and a
way for the application to know what menu items are associated
with which plug-ins and how to call them.

The first issue is easy to resolve. I prefer to use the Windows registry
to store a list of references to all the plug-ins recognized by the
application. The application also provides a plug-in manager dialog
box, which offers a way for users to specify the names of all the
COM Automation objects that the application should load as plug-
ins when it starts.

Handling menu-to-plug-in association is a bit more complicated,
and includes the use of a new menu item class (I named it
TAutomatedMenu) derived from TMenuItem. The definition of this
new class is remarkably simple:

type
TAutomatedMenu = class(TMenuItem)
private

FHandler : IeAuthorMenuHandler;
procedure HandleClick(Sender: TObject);

public
constructor Create(AOwner: TComponent); override;
property Handler: IeAuthorMenuHandler

read FHandler write FHandler;
end;

As you can see, an automated menu includes a reference to an
IeAuthorMenuHandler interface, and a pre-defined click event han-
dler named HandleClick. As you may recall from the previous sec-
tion, the AutoMenuItem wrapper around the menu item object has
a SetHandler method that’s used by a plug-in that creates a new
menu item. As you can imagine, SetHandler sets the Handler prop-
erty of an automated menu item to point to itself.

With this business handled, the rest of the class implementation
is trivial. The Create constructor sets the OnClick event to the
HandleClick event handler, which in turn uses the handler’s
Execute method:
29 December 1999 Delphi Informant Magazine
constructor TAutomatedMenu.Create;
begin

inherited Create(AOwner);
OnClick := HandleClick;

end;

procedure TAutomatedMenu.HandleClick;
begin

if (Assigned(FHandler)) then
FHandler.Execute(Tag);

end;

Sample Application
To demonstrate application extension via COM plug-ins, I wrote a
simple text editor application (see Figure 6). The application uses a
simple tabbed interface that allows you to edit multiple text docu-
ments. Think of it as a poor man’s Notepad with extensibility. I
decided to implement only a subset of the functionality one would
normally implement in such an application, which is the minimum
I needed to make the example useful.

The code that is available as part of this article includes the project
editproj.dpr, the Delphi source for the sample application (available
for download; see end of article for details). MainForm.pas is the
definition and the code of the main form. PIMgr.pas is the code for
the plug-in manager dialog box, which is used to “register” COM
plug-ins with the sample application.

The application’s object model consists of an Application object that
provides access to the menu bar and to the document being edited.
A more complete example will allow access to documents not cur-
rently edited by the user and the ability to switch between docu-
ments, but for the purpose of this example, this is all I needed.

The COM Application object (implemented in AutoApp.pas) pro-
vides access to COM objects implemented in the AutoMenu.pas
file, and to the COM document object implemented in the
AutoDoc.pas. The Menu object allows you to set menu attributes
(caption, short-cut, visibility, and — for newly created menus —
code handler), and allows you to create new menu entries that will
be inserted into the application’s menu bar. The document object
provides access to the selected text and cursor location, and allows us
to insert new text lines into the document.

30 December 1999 Delphi Informant Magazine

Figure 7: The results of using the ProcRemark plug-in to create a pr
dure header remark and body for the HelloWorld procedure.

In Development

Installing the Sample Application
The code provided with the application includes the source and
the compiled versions of the application and the plug-ins.
You’ll need to perform the following steps to use the plug-ins
with the application:
1) Register the plug-in DLLs with the COM system (use

regsvr32.exe in Window’s \System directory. Or, if you’re
rebuilding the DLLs with Delphi, use the Run | Register |

ActiveX Server menu option. (When you’re deploying an appli-
cation that uses COM plug-ins, you’ll register the ActiveX
servers from within your set-up program. Most set-up devel-
opment tools allow you to set a file attribute and declare it as
a self-registering ActiveX/OCX server.)

2) RegSvr32 HelloWorld.DLL
3) RegSvr32 ProcRemark.DLL
4) You need to register the plug-ins with the sample application.

Start EditProj.exe and display the Plugin Manager dialog box
using the Tools | Plug-ins menu option (see Figure A). Use the
Add button to add HelloWorld.Plugin and ProcRemark.Plugin
to the plug-in list. When you close the Plugin Manager dialog
box, the new menu items will be added to the application.

— Ron Loewy

Figure A: The Plugin Manager dialog box.
In the application’s OnShow event, the list of “registered”
plug-ins is read from the registry, and these plug-ins are
activated. The plug-ins in turn create new menu items that
are added to the application’s menubar. The user can now
select the new menu entries and activate them.

The type library of the sample project also defines two
interfaces, IEditMenuHandler and IEditPlugin, that must
be implemented by plug-in COM objects. The applica-
tion source also includes XtdMenu.pas, which imple-
ments a TAutomatedMenu menu item descendant that
can activate a plug-in via the IEditMenuHandler inter-
face from a menu.

I wrote two simple plug-ins to show the capabilities of what
we can do with COM objects compiled separately from our
application. The first, defined in HelloWorld.dpr, defines an
Automation object named HelloWorld.Plugin that imple-
ments the required interfaces (see HWPI.pas), and adds a
Hello World menu item to the Help menu. As can be expected,

the plug-in displays a dialog box with the universal message displayed
for programmer education worldwide.

A more sophisticated plug-in is implemented in ProcRemark.dpr,
which takes advantage of the application’s object model and adds two
menu items to the Edit menu. The Remark procedure adds a three-line
remark with the selected text between lines of asterisks, which are
located above the line of the currently selected text (see Figure 7). The
Procedure Body menu item adds a begin..end procedure body beneath
the selected text in the editor. A long time ago, I wrote two functions
like these in Brief ’s extension language (Brief being the text editor cre-
ated by Underware Software and being sold for a while by Borland).
It’s amazing how much more productive I became when my Pascal
sources were always prefixed and suffixed with the same style. The
code for the function’s implementation is provided in PRPI.pas. It’s
trivial, and, as such, left unexplained in this article.

Conclusion
Today’s applications require extensibility and programmability. The
Microsoft COM foundation is an excellent way to provide scripting,
Automation, and plug-in capabilities from your application. Creating
an extensible application requires a well-thought-out object model that
maps the application’s objects and concepts as COM objects that can
be accessed from extension modules. Plug-ins can be created by adding
support for minimal extension interfaces within the applications.
COM plug-ins can be created in different development tools, and
doesn’t require recompiling the application. ∆

The files referenced in this article are available on the Delphi Informant
Works CD located in INFORM\99\DEC\DI9912RL.

oce-

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer of
eAuthor Help, HyperAct’s HTML Help authoring tool. For more information about
HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910 or visit
http://www.hyperact.com.

http://www.hyperact.com

31 December 1999 Delphi Informant Ma

New & Used

By Bill Todd

Figure 1: TfcImager w
1stClass
A Set of First-class Delphi Components

If you’re looking for a set of controls to give your applications a distinctive look and
feel, look no further than 1stClass from Woll2Woll Software. 1stClass includes Shape

Button, Image Button, Button Group, Color Combo, Color List, Tree View, DB Tree View,
Tree Combo, Font Combo, Image Form, Imager, Label, OutlookBar, and Status Bar com-
ponents that offer a host of features not found in their Delphi counterparts.
g

i

If you like the look of Microsoft Outlook, the
TfcOutlookBar component will let you duplicate
it, and more. Working with the OutlookBar is
surprisingly easy. The first step is to drop the
OutlookBar on your form and set its Align
property to position the bar either vertically at
the left or right side of the form, or horizontally
at the top or bottom. Next, select the

OutlookItems proper-
ty and click the
ellipsis button to
open the Collection
Editor. Using the
context menu or
toolbar in the
Collection Editor,
add one or more
pages to the
OutlookBar. The
page buttons are
actually TfcShapeBtn
components, so you
can assign a graphic
to the button’s Image
property and the
button assumes the
shape of the graphic.
Click the active page
in the OutlookBar
and select its Images
property to assign an
ImageList compo-th a JPEG photo loaded.
azine
nent that contains the images you want to use
for the items on this page. Next, select the Items
property. Open the Collection Editor for the
Items property and add the number of items
you need for the current page. Now select each
item, set its ImageIndex property to the correct
image in the ImageList component, then switch
to the Events page of the Object Inspector and
create an OnClick event handler. That’s all there
is to it. Another remarkable feature of the
OutlookBar is the ability to embed other com-
ponents in the bar.

The TfcImager control is similar to Delphi’s
TImage component, but with much more
power. The Picture property of TfcImager lets
you load a JPEG, bitmap, icon, enhanced
metafile, or Windows metafile image. Using
other properties, you can change the appearance
of the image in various ways. For example, you
can adjust the contrast, brightness, and satura-
tion, or give the image an embossed, blurred, or
sponged look. You can also flip or rotate the
image in any direction and apply a tint. Figure 1
shows an Imager with a digital camera photo-
graph loaded. You can also set the Imager prop-
erty of the TfcDBTreeView or TfcOutlookBar
controls so they’ll use the Imager to supply a
background bitmap.

1stClass also includes a Tree View component
and a Tree Combo component. Each node in

New & Used

Figure 4: A clickable map using TfcImage buttons for the counties.
the TfcTreeView consists of a label, one or more images, and a list
of optional checkboxes or radio buttons. Each node can also have
a list of subnodes, which in turn can have subnodes, allowing
you to build a tree of any depth. The TfcTreeCombo shares most
of the capabilities of the Tree View in a combo-box format. The
Tree Combo component can also be embedded in the
TwwDBGrid component that is part of Woll2Woll’s InfoPower
Suite. Figure 2 shows a Tree View that contains both checkboxes
and radio buttons.

TfcDBTreeView is a data-aware Tree View component that can
automatically model any master/detail relationship regardless of
the complexity or the number of datasets involved. The datasets
can consist of any combination of TTable and TQuery compo-
nents. To use the DB Tree View component, you must set the
DataSourceFirst property to the DataSource component for the
dataset that is the root node of the tree. Next, you must set the
DataSourceLast property or the DataSource property. Setting
DataSourceLast will cause all DataSources between the root node
and the DataSource specified in DataSourceLast to appear in the
tree. Using the DataSources property lets you specify a list of
DataSources to display. The DataFields property provides control
over which fields are displayed at each level in the tree. Figure 3
shows a data entry form that incorporates a DB Tree View. The
DB Tree View provides a live view of the data, so navigating
from one record to another in the DB Tree View will change the
current record in any form that uses the same dataset, and vice
versa. (Note also the use of an Imager component to provide a
graphical background for the DB Tree View in Figure 5).

TfcImageBtn is a class with all the features of the standard Delphi
TButton, TBitBtn, and TSpeedButton classes, but it gets its shape

and appearance
from an image. To
give the button a
different look when
it’s depressed, assign
different images to
the button’s Image
and ImageDown
properties. The up
and down images
can be completely
different, so the
button will have a
different appearance
and shape when it’s
down. You can even
create clickable
maps, as shown in

Figure 2: The TfcTreeView.
32 December 1999 Delphi Informant Magazine

Figure 3: The sample Customers, Orders, and Items tables in a
TfcDBTreeView.
Figure 4, by using an
ImageBtn for each
area of the map.

TfcShapeBtn com-
bines the functionali-
ty of TSpeedButton
and TBitBtn with the
ability to create but-
tons of virtually any
shape. Figure 5
shows the standard
shapes for the
ShapeBtn. If the
standard shapes don’t
meet your needs, you
can create custom
shapes by defining a
list of points that
describe the shape.
You can control the button’s color as well as the highlight colors
that are used for three-dimensional effects. The image and shape
buttons provide OnMouseEnter and OnMouseLeave events, which
you can use to make the button change its appearance when the
mouse cursor passes over the button.

TfcButtonGroup lets you easily create a collection of shape buttons
or image buttons. You can arrange the buttons in any number of
rows and columns, as well as adjust the spacing between adjacent
buttons. Three behaviors are available when the buttons are
clicked: The buttons can behave as a group of radio buttons, as
toggle buttons, or as click buttons. If you set the ClickStyle prop-
erty to bcsRadioGroup, only one button can be depressed at a
time. Optionally, you can allow all the buttons to be up, or you
can require that one always be depressed. The bcsCheckList option
allows any combination of buttons to be depressed at one time,
simulating a group of checkboxes. Choosing bcsClick makes the
buttons behave as regular buttons so they remain depressed only
as long as you hold the mouse button down. The TfcButtonGroup
class also provides a Transparent property. When set to True, all
areas of the button group not covered by a button will be trans-
parent. Figure 6 shows a button group with the Transparent prop-

Figure 5: The standard shapes for
TfcShapeBtn.

New & Used
erty set to True so the back-
ground graphic fills the area
around the buttons.

When you drop the
TfcImageForm control on a
Delphi form, you create a form
whose shape is defined by the
non-transparent areas of the
image specified by the Picture
property. The TfcImageForm also
sets the host form’s BorderStyle to
bsNone to remove the form’s bor-
der and title bar. The result is a
form that consists only of the
graphic assigned to the Picture
property. Although the form has
no title bar, users can still drag it
by depressing the left mouse but-
ton over any part of the form.
You can also assign any control
on the form to the ImageForm’s
CaptionBarControl property. Now
dragging the assigned control will

drag the form, and attempting to drag
any other area of the form will not.

The TfcColorCombo and TfcColorList
components provide users with tools to
easily select a color. The Color Combo
component is data-aware and can be
used to store colors in a database table
by storing either its name or integer
value. You can choose from system or
standard color lists, or construct your
own custom colors. If you’re an
InfoPower user, you can embed the
ColorCombo and all the other 1stClass
combo components into the InfoPower
Grid and RecordView components.

TfcStatusBar resembles the Delphi
TStatusBar but with much more flex-
ibility. You can add any number of
panels to the status bar and automat-
ically display the hint properties

from controls on the form; the current date, time, or both; the
state of c, n, o, and I; and the computer
name or the name of the current user. You can also embed your
own components in the StatusBar’s panels. You can also size the
panels in a status bar proportionally so the panels will occupy the
same percentage of the status bar’s width when the form is resized.

TfcFontCombo is a combobox for selecting fonts with an optional most
recently used list at the top. Setting the MaxMRU property to a value
other than zero will cause the most recently used fonts to appear at the
top of the drop-down list. TfcLabel is a label component that supports
shadow, extrusion, engraved, embossed, and outline effects.

Conclusion
1stClass is an excellent set of components for adding sophistica-
tion to the user interface of your Delphi programs. Woll2Woll
still believes in providing user manuals, and 1stClass comes with

Figure 6: A TfcButtonGroup
with transparent background.

If you’re looking for a set of con-
trols to give your applications a
distinctive look and feel, look no
further than 1stClass from
Woll2Woll Software. 1stClass
provides an excellent set of com-
ponents for adding sophistication
to the user interface of your
Delphi programs.

Woll2Woll Software
2217 Rhone Drive
Livermore, CA 94550

Phone: (800) 965-2965
Fax: (925) 371-1664
E-Mail: sales@woll2woll.com
Web Site:
http://www.woll2woll.com
Price: Standard version, US$199;
Professional version, US$299.
33 December 1999 Delphi Informant Magazine
a well-indexed, 178-page, wire-bound manual that provides a
complete reference to all the components and their custom prop-
erties, methods, and events. 1stClass comes in a Standard ver-
sion, which supports Delphi 3 through 5, and a Professional ver-
sion, which supports Delphi 3 through 5 and C++Builder 3 and
4. You can give 1stClass a try by downloading the demonstration
version from Woll2Woll’s Web site. ∆

Bill Todd is President of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is a Contributing Editor of Delphi
Informant, a co-author of four database programming books and over 60 arti-
cles, and a member of Team Borland, providing technical support on the Borland
Internet newsgroups. He is a frequent speaker at Borland Developer Conferences
in the US and Europe. Bill is also a nationally known trainer and has taught
Paradox and Delphi programming classes across the country and overseas. He
was an instructor on the 1995, 1996, and 1997 Borland/Softbite Delphi World
Tours. He can be reached at bill@dbginc.com.

http://www.woll2woll.com

File | New
Directions / Commentary
In Review: Delphi 4 Books

Now that Delphi 5 has shipped, let’s put the Delphi 4 books into perspective. I’ll also include some classics — books
that have been around (in some cases since Delphi 2) that are still worth adding to your collection. Many of these

continue to be relevant, although, of course, none will cover the new features specific to Delphi 5.
The classics. We can usually expect much from a book that has
been published in several editions. It generally indicates a high level
of quality and strong confidence on the part of the publisher and
the audience. I’ll examine three such enduring classics, one of which
I reviewed in these pages. Of course, all three emphasize Delphi 4’s
new features; all three are comprehensive, covering the major aspects
of Delphi and its underlying language, Object Pascal; and all three
deal with the major Delphi disciplines, including component writ-
ing, database programming, and the IDE. However, each has its par-
ticular emphasis and strength.

Among them, Mastering Delphi 4 by Marco Cantù [SYBEX, 1998]
continues to be the best entry-level work. In fact, I still refer to it
from time to time when I decide to explore an area of Delphi that’s
new to me. Always an innovator, Cantù has come up with what I
consider to be an effective new approach to publishing: Rather than
include all the book’s code on a CD-ROM, he has made it available
at his Web site. I wonder if this will become a trend in Delphi pub-
lishing; it’s certainly worth imitating.

Charlie Calvert’s Delphi 4 Unleashed [SAMS, 1998] is an update of a
Delphi classic. It didn’t appear in a Delphi 3 version, but is back for
version 4. A great deal has changed since the Delphi 2 version, so
much so that calling this an update is really not fair. Gone is the intro-
duction to Object Pascal that began the earlier edition. In its place are
several chapters designed to introduce the reader to Delphi program-
ming — topics such as program design, Delphi’s IDE, and enhance-
ments in version 4. However, the excellent discussions of component
writing and multimedia remain in the new edition, along with updated
database topics. In particular, this book really shines in its treatment of
the new technologies MIDAS, CORBA, and COM/DCOM.

I reviewed Borland Delphi 4 Developer’s Guide by Steve Teixeira and
Xavier Pacheco [SAMS, 1998]. Although I pointed out that one of
the great strengths of this work is its collection of tips, the value of
this book goes much further. It begins with an excellent chapter on
Object Pascal. As with the other two classics mentioned, it provides an
overview of the extensions to the language introduced in Delphi 4. I
found the chapters on dynamic link libraries and multithreading par-
ticularly excellent. It also covers component-writing topics, including
component editors and packages. A large part of this work deals with
database programming, going well beyond the usual topics, and con-
tinues generally to be the most “advanced” of the three titles.

New works. As with Delphi 3, there have been some new special-
ized and general works that have appeared in the last year. One spe-
34 December 1999 Delphi Informant Magazine
cialized reference I found particularly useful was Clay Shannon’s
Developer’s Guide to Delphi Troubleshooting [Wordware Publishing,
1999], which is essentially an encyclopedia of Delphi error messages.
If you’ve been programming for years in Delphi (or Turbo Pascal, for
that matter), you’ll encounter some “old friends” here. At first I
wondered if there would be anything new for me. I didn’t have to
wait long. Within a few days of receiving this valuable reference, one
of the error explanations saved me hours of needless effort in getting
an API call to work.

I would be remiss not to mention the return of a venerable pro-
gramming author, Tom Swan, with his Delphi 4 Bible [IDG Books
Worldwide, 1998]. As Warren Rachele correctly points out in his
February, 1999 Delphi Informant Magazine review, this work is par-
ticularly appropriate for the intermediate-level developer who wants
to advance. I’m not as convinced, however, that this book would not
also benefit less-experienced Delphi developers, particularly if they
had mastered one of the three classics previously discussed.

Library essentials. To conclude, we’ll take a walk down memory
lane and review some of the earlier works of some Delphi gurus.
The essential Delphi library would be incomplete without Ray
Lischner’s Secrets of Delphi 2 [Waite Group Press, 1996] and
Hidden Paths of Delphi 3 [Informant Communications Group,
1997]. While these provide a wealth of valuable information for
component writers, Ray Konopka’s Developing Custom Delphi 3
Components [Coriolis Group Books, 1996] remains the essential
work for component writers. Finally, Delphi Developer’s
Handbook [SYBEX, 1998] by Marco Cantù and Tim Gooch
remains one of my favorites for advanced topics in application
development. You can find out more about many of these books
by reading the full reviews on the Delphi Informant Magazine
Web site at http://www.DelphiMag.com.

Next month we’ll explore a “what if ” that none of us looks forward
to dealing with. Until then ...

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical
journals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly sound
and music. You can reach Alan on the Internet at acmdoc@aol.com.

http://www.DelphiMag.com

	Table of Contents
	Delphi Tools
	Xenomorph Announces XLLSpy
	DeVries Data Systems Announces OfficePartner
	Digital Metaphors Ships ReportBuilder 4.1
	Object River Announces EasyUpper
	Primoz Gabrijelcic Releases GpProfile 1.3.2
	Tetradyne Releases SourceView ActiveX Control Version 2.1
	MCM Design Offers TWAIN Toolkit for Delphi Version 1.8.1
	Excel Software Announces WinA&D 3.0
	Eminent Domain Announces EDSZipCodes
	North Winds Releases PDF Forms Toolkit Component for Delphi

	Delphi News
	Inprise Names J.D. Hildebrand Content Director for New Community Site
	BDE 5.10 Available
	Inprise and Data General to Deliver Enterprise Solutions
	Director’s Lawsuit against Inprise Dismissed
	Inprise and Corel Form Alliance to Accelerate Linux

	DBNavigator
	Overview of Frames
	Creating a Frame
	Using a Frame
	Frames and Inheritance
	Overriding Contained Component Properties
	Contained Object Event Handlers
	Overriding Contained Object Event Handlers
	Frames that Save Resources
	Simplifying Frame Use
	Adding a Frame to the Component Palette
	Using a Frame from the Component Palette
	Adding a Frame to the Object Repository
	Using a Frame from the Object Repository
	Conclusion

	Undocumented
	The Shell Namespace
	A Rose by Any Other Name
	PIDL Memory Allocation
	From Paths to PIDLs and Back Again
	Display Name
	Windows NT and PWideChar
	Equality and Parenthood
	Parsing a PIDL
	Copying and Combining
	Global Memory Cloning
	Truncation
	Conclusion

	Sound + Vision
	Basic Functionality of the Expert
	More Events and Options
	Basic Types and Data Structures
	Updating the Delphi Expert Interface
	Creating a User Interface
	Using Tool Services to Access Installed Components
	Conclusion
	Begin Listing One — SndTypes.pas
	Begin Listing Two — SndExprt.dpr

	In Development
	Why COM?
	Planning the Extension Framework
	Implementing an Object Model
	Debugging Your Object Model
	Providing Menubar Access via COM Interfaces
	Setting Plug-in Rules
	Adding Plug-in Support
	Sample Application
	Conclusion

	New & Used
	Conclusion

	File I New

